1 Introduction

Stockbridge dampers are the most common devices used to control aeolian vibration of overhead power lines. They eliminate or reduce the vibration level of the conductor by absorbing the wind energy. This absorption of the wind energy is only possible when their natural frequencies are tuned to cover the range of the forcing frequency, which is also known as Strouhal frequency. The modern Stockbridge damper has two types of dampers, namely, 2R damper and 4R damper [1]. The former, 2R damper, is a symmetric damper consisting of two identical weights and messengers at both ends. It has two natural modes of vibration. The latter, 4R damper, is an asymmetric damper and is depicted in Fig. 1. It is made up of unequal weights and unequal messenger lengths on each side. This type of Stockbridge damper exhibits up to four resonant frequencies.

The damping mechanism of the Stockbridge damper is based on the transfer of vibrations of the conductor through the clamp to the messenger cable. The flexing of the messenger causes slipping between its strands which induces oscillation in the weights at their ends.

Several authors have examined the dynamics of the Stockbridge damper. The common approach is to experimentally determine its impedance curve [2–10]. Another approach is to model the Stockbridge damper as a two degree-of-freedom system [11,12]. An attempt to depart from the conventional way of modeling the Stockbridge damper was reported in Refs. [13–16]. The messenger cable was modeled as an Euler–Bernoulli beam and the counterweight was modeled as mass with a rotatory inertia. Both studies omitted the geometric nonlinearity of the messenger cable and employed the finite element method.

The current study presents an analytical model that accounts for the nonlinearity of the messenger cable. Numerous authors (see Refs. [17–24]) have examined the nonlinear vibration of beams with attached mass or spring mass. However, these investigations are limited to cases with end support. In the present study, the support is in-span and a tip mass is attached at each end. Hamilton’s principle is used to derive the system governing equations. Explicit expressions are presented for the frequency modulation equations, mode shapes, and the nonlinear natural frequency.

Experiments are conducted using three different Stockbridge dampers to benchmark the analytical model. Parametric studies are then performed to examine the effect of the damper parameters on the natural frequency and response.

2 Description of the System

A schematic of a single conductor with a Stockbridge damper is depicted in Fig. 1. It consists of a clamp, a messenger (or damper cable), and a mass (or counterweight) at each end of the messenger. The system of messenger and damper counterweights are modeled as two cantilevered Euler–Bernoulli beams with tip masses, as shown in Fig. 2. The attachment is the clamp which is interpreted as an infinitely rigid body.

3 Equations of Motion

A reference frame is attached to the clamp as shown in Fig. 2. The system kinetic and potential energies are given as

\[T = \sum_{j=1}^{2} \left(\frac{1}{2} m_j \int_0^{L_j} \dot{w}_j^2 dx + \frac{1}{2} M_j \dot{w}_j^2 \right) \]

\[V = \sum_{j=1}^{2} \left(\frac{1}{2} E I_j \int_0^{L_j} \dot{w}_j^4 dx + \frac{1}{2} EA \int_0^{L_j} \dot{w}_j^2 \right) dx \]

where \(E \) denotes the Young’s modulus of elasticity of the messenger, \(I \) represents the moment of inertia of the messenger, \(A \) is the messenger cross section area, and \(m \) is the mass per unit length of the messenger. \(W_1 \) and \(W_2 \) denote the transverse displacement of the messenger on the left-hand side and right-hand side, respectively.
respectively. M_1 and M_2 are the mass of the left and right counterweights, respectively. J_1 and J_2 are the rotational inertia of left and right counterweights, respectively. L_1 and L_2 are the length of the left and right messengers, respectively. The primes and dots represent the derivative with respect to the axial coordinate x and time t, respectively.

Using Hamilton’s principle and eliminating the axial displacement between Eqs. (1) and (2) yields the following equations of motion:

\[
Ew'' + mw' = \frac{EA}{L} \left(\sum_{j=N}^{m} \int_0^1 w_j^2 \, dx \right) w''_j \tag{3}
\]

and the accompanying boundary conditions are given as

\[
w_1(0) = w_2(0) = w'_1(0) = w'_2(0) = 0 \tag{4}
\]

\[
Ew''(L_j) = M_j w'(L_j) \tag{5}
\]

\[
Ew''(L_j) = -J_j w'(L_j) \tag{6}
\]

4 Free Vibration Analysis

The introduction of the following dimensionless parameters:

\[
\tau = \frac{t}{\sqrt{\frac{EI}{m}}}, \quad \xi = \frac{x}{L}, \quad \zeta_j = \frac{w_j}{W_j}, \quad x_j = \frac{M_j}{mL}, \quad \gamma_j = \frac{J_j}{mL^2}, \quad f_n = \frac{F \sin \theta}{EI}, \quad r = \sqrt{\frac{I}{AM^2}}, \quad \delta(\zeta) = \frac{\delta(x)}{L} \tag{7}
\]

permits Eqs. (3)–(6) to be rewritten nondimensionally as

\[
W'' + W_j = \frac{1}{2} W'' \left(\sum_{j=1}^{m} \int_0^1 w_j^2 \, d\zeta \right) \tag{8}
\]

\[
W_1(0) = W_2(0) = W'_1(0) = W'_2(0) = 0 \tag{9}
\]

\[
W''(\zeta_j) = \gamma_j W'(\zeta_j) \tag{10}
\]

\[
W' (\zeta_j) = -\gamma_j W(\zeta_j) \tag{11}
\]

The nondimensional displacement $W_j(\xi, \tau)$ is expanded in the modal basis of the messenger Y_m (i.e., the mode shape of a cantilevered beam with tip mass) as

\[
W_j(\zeta, \tau) = r^j \sum_{m=1}^{N} q_m(\tau) Y_m(\zeta) \tag{12}
\]

where $Y_m(\zeta)$ is the mth mode shape of the messenger and can be expressed as

\[
Y_m(\zeta) = \left[\cos(\Omega_m \zeta) - \lambda_j \sin(\Omega_m \zeta) - \cos h(\Omega_m \zeta) + \lambda_j \sin h(\Omega_m \zeta) \right] \tag{13}
\]

where

\[
\lambda_j = \frac{v_j - z_j \Omega_j h_j}{(c_j + z_j \Omega_j h_j)} \tag{14}
\]

and the following abbreviations are employed: $s_j = \sin \Omega_j \zeta_j$, $c_j = \cos \Omega_j \zeta_j$, $sh_j = \sin h(\Omega_j \zeta_j)$, and $ch_j = \cos h(\Omega_j \zeta_j)$.

For the non-linear problem, Eq. (12) is substituted into Eq. (8) to get

\[
\sum_{m=1}^{N} (\ddot{q}_m + \omega_n^2 q_m) Y_m = \frac{r^2(2k-1)}{2} \left[\left(\sum_{m=1}^{N} \sum_{n=1}^{N} q_n Y_m^m Y_n^m d\zeta \right) \times 2 \left(\sum_{p=1}^{N} \sum_{j=1}^{N} q_p q_l \sum_{j=1}^{N} \int_0^1 Y_m^m Y_n^m d\zeta \right) \right] \tag{15}
\]

When Eq. (15) is explicitly written for $j = 1$ and $j = 2$, the resulting equations are correspondingly multiplied by Y_1 and Y_2, the first expression is integrated over the range of 0 to ζ_j and the second over 0 to ζ_j, then adding the two resulting equations as well as applying orthogonality and boundary conditions yields

\[
\ddot{q}_n + \omega_n^2 q_n = \frac{2r(2k-1)}{2} \left[\left(\sum_{m=1}^{N} \sum_{n=1}^{N} q_m Y_m^m Y_n^m d\zeta \right) \times 2 \left(\sum_{p=1}^{N} \sum_{j=1}^{N} q_p q_l \sum_{j=1}^{N} \int_0^1 Y_m^m Y_n^m d\zeta \right) \right] \tag{16}
\]

The right-hand side of Eq. (16) may be rewritten as

\[
\Gamma_{mnp} = -\frac{1}{2} \sum_{j=1}^{2} \left(\int_0^1 Y_m^m Y_n^m d\zeta \right) \left(\int_0^1 Y_j^m Y_j^m d\zeta \right) \tag{17}
\]

It is noted that Γ_{mnp}, has both minor and major symmetries. In order to obtain an approximate solution to Eq. (16), in cognizance of the accompanying boundary and initial conditions, the slenderness ratio r is, as is commonly the case in nonlinear beam vibration literature [8], identified as the parameter to define the degree of nonlinearity of the equations. Hence, the perturbation parameter, ξ, depends on the slenderness ratio r and can be expressed as $\xi = r^{2k-1}$. If damping and forcing terms (μ_n and f_n) are added to Eq. (16), then

\[
\ddot{q}_n + \omega_n^2 q_n = \sum_{m=1}^{N} q_m q_n Y_m Y_n d\zeta \Gamma_{mnp} - 2\mu_n q_n \tag{18}
\]

For the special case of undamped free vibration, $\mu_n = 0$ and $f_n = 0$, Eq. (18) becomes

\[
\ddot{q}_n + \omega_n^2 q_n = \sum_{m=1}^{N} \sum_{p=1}^{N} q_m q_n Y_m Y_n \Gamma_{mnp} \tag{19}
\]

This equation is solved using the multiple scales method, which is one of numerous available methods to obtain approximate solutions of nonlinear differential equations. The fundamental premise of the method is the uniform expansion of the dependent variable in terms of two or more independent variables which are commonly called scales. These scales are further distinguished as fast time or slow time. The former is the original independent variable, real time, and the latter is a function of the perturbation parameter

\[
\dot{x}_n + \omega_n^2 x_n = \sum_{m=1}^{N} \sum_{p=1}^{N} q_m q_n Y_m Y_n \Gamma_{mnp} \tag{19}
\]
\[q_n = q_{n0} + \epsilon q_{n1} + O(\epsilon^2) \]
(20)

Let \(T_0 = \tau, T_1 = \epsilon \tau, T_2 = \epsilon^2 \tau, \) and \(T_n = \epsilon^n \tau, T_i (i = 1, 2, \ldots, n) \) are called fast and slow time, respectively. The differential operator with respect to the time scale \(\tau \) can be expanded to \(O(\epsilon^2) \)

\[
\frac{d}{d\tau} = D_0 + \epsilon D_1, \quad \frac{d^2}{d\tau^2} = D_0^2 + 2\epsilon D_0 D_1
\]
(21)

where \(D_0 = \partial / \partial T_0 \) and \(D_1 = \partial / \partial T_1 \). Substituting Eqs. (21) and (20) into Eq. (19) yields

\[
(D_0^2 + 2\epsilon D_0 D_1)(q_{00} + \epsilon q_{01}) + \omega_n^2 q_{00} + \epsilon \omega_n^2 q_{01} = \epsilon \sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N n m q_{n0} q_{s0} \Gamma_{nmns}
\]
(22)

Collecting terms of the same order of \(\epsilon \) yields

order \(\epsilon^0 \): \(D_0^2 q_{00} + \omega_n^2 q_{00} = 0 \)

order \(\epsilon^1 \): \(D_0^2 q_{01} + \omega_n^2 q_{01} = -2\epsilon D_0 D_1 q_{00} + \sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N n m q_{n0} q_{s0} \Gamma_{nmns} \)

(23)

The solution of Eq. (23) can be expressed as

\[q_{00} = A_n(\tau_1) e^{i\phi_n\tau_0} + \text{cc} \]

where \(A_n \) is a complex function of slow time, \(\phi_n \) is the linear natural frequency, and cc is the complex conjugate of the preceding terms. Substituting Eq. (23) into Eq. (24) yields

\[
D_0^2 q_{01} + \omega_n^2 q_{01} = -2i\epsilon \omega_n A \tilde{A} e^{i\phi_n\tau_0} + \sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N \Gamma_{nmns}\left\{ A_{mn} A_{ns} e^{i(\phi_n + \phi_m + \phi_s)} + A_{sn} A_{nm} e^{i(\phi_s + \phi_m + \phi_n)} \right\} \\
+ A_{ns} A_{mn} e^{i(\phi_n + \phi_m + \phi_s)} + A_{mn} A_{ns} e^{i(\phi_n + \phi_m + \phi_s)} + \text{ccc}
\]
(24)

To obtain a periodic solution for Eq. (24), the secular terms in Eq. (26) must vanish, the secular term can be expressed as

\[-2i\epsilon \omega_n A_n' + \sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N \Gamma_{nmns}\left\{ A_{mn} A_{ns} e^{i(\phi_n + \phi_m + \phi_s)} + A_{sn} A_{nm} e^{i(\phi_s + \phi_m + \phi_n)} \right\} = 0 \]

(27)

\(A_n \) can be expressed in the polar form as

\[A_n(\tau_1) = \frac{1}{2} a_n(\tau_1) e^{i\phi_n(\tau_1)} \]

(28)

Substituting Eq. (28) into Eq. (27) and separating real terms from imaginary terms yields

\[\omega_n a_n' = 0 \]

(29)

\[\omega_n a_n' + \frac{1}{2} a_n \sum_{m=1, n \neq m}^N \Gamma_{mmns} e^{i(\phi_n + \phi_m + \phi_s)} + \frac{3}{8} a_n^2 \Gamma_{nnn} = 0 \]

(30)

From Eq. (29), \(a_n' = 0 \) yields

\[a_n = a_{n0} = \text{constant} \]

(31)

and Eq. (30) gives

\[\beta_n = -\frac{1}{2\epsilon \omega_n} \left[\sum_{m=1, n \neq m}^N a_n^2 \left(\Gamma_{mmns} + \frac{1}{2} \Gamma_{nnn} \right) + \frac{3}{8} a_n^2 \Gamma_{nnn} \right] \]

(32)

The integration of Eq. (32) with respect to \(\tau_1 \) and use of the relation \(\tau_1 = \epsilon \tau_0 \) yields

\[\beta_n = -\frac{\epsilon \tau_0}{\epsilon \omega_n} \left[\sum_{m=1, n \neq m}^N a_n^2 \left(\Gamma_{mmns} + \frac{1}{2} \Gamma_{nnn} \right) + \frac{3}{8} a_n^2 \Gamma_{nnn} \right] + \beta_{n0} \]

(33)

The zero-order approximation can now be expressed as

\[q_{00} = \frac{1}{2} a_{n0} e^{i\phi_n(\tau_0)} + \text{cc} \]

(34)

while the nonlinear frequency is

\[\omega_n,\text{NL} = \omega_n - \frac{\epsilon \tau_0}{\epsilon \omega_n} \left[\sum_{m=1, n \neq m}^N a_n^2 \left(\Gamma_{mmns} + \frac{1}{2} \Gamma_{nnn} \right) + \frac{3}{8} a_n^2 \Gamma_{nnn} \right] \]

(35)

5 Forced Vibration

Consider primary resonance: \(\Omega = \omega_1 + \epsilon \sigma \) where \(\sigma \) is a detuning parameter that quantitatively describes the nearest of \(\Omega \) to \(\omega_1 \). If the forcing term is expressed as \(f_n = f_0 e^{i\Omega \tau} + \text{cc} \), then Eq. (18) can be rewritten as

\[\dot{q}_n + \omega_n^2 q_n = \epsilon \left[\sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N n m q_{n0} q_{s0} \Gamma_{nmns} - 2\mu q_{n0} \right] + 2f_0 \sin \Omega \]

(36)

\[f_n = f_0 e^{i\Omega \tau} + \text{cc} \]

(37)

Equation (38) is easily deduced by following the procedure outlined in Sec. 4:

\[D_0^2 q_{01} + \omega_n^2 q_{01} = -2i\epsilon \omega_n A \tilde{A} e^{i\phi_n\tau_0} - 2\mu q_{n0} A \tilde{A} e^{i\phi_n\tau_0} + f_0 e^{i\Omega \tau} + \sum_{m=1}^N \sum_{n=1}^N \sum_{s=1}^N \Gamma_{nmns}\left\{ A_{mn} A_{ns} e^{i(\phi_n + \phi_m + \phi_s)} + A_{sn} A_{nm} e^{i(\phi_s + \phi_m + \phi_n)} \right\} \\
+ A_{ns} A_{mn} e^{i(\phi_n + \phi_m + \phi_s)} + A_{mn} A_{ns} e^{i(\phi_n + \phi_m + \phi_s)} + \text{ccc} \]

(38)

The solvability condition that yields the elimination of the secular term can be expressed as

For \(n = 1 \)

\[-2i\epsilon \omega_n (A_1' + \mu_1 A_1) + f_0 e^{i\Omega_1 \tau} + A_1 \sum_{m=1}^N A_m A_{nm} (4\Gamma_{mmnl} + 2\Gamma_{nnnl}) \\
+ 3 A_1^2 A_1 \Gamma_{1111} = 0 \]

(39)
For \(n \geq 2 \)

\[-2i\omega_n (A'_n + \mu_n A_n) + A_n \sum_{m=1, m \neq n}^{N} A_m A_m (4\Gamma_{mn mn} + 2\Gamma_{mn mn}) + 3A_n^2 A_n \Gamma_{mn mn} = 0\]

(40)

Using Eq. (28) in Eqs. (39) and (40) yields

For \(n = 1 \)

\[-i\omega_1 (a'_1 + ia_1 \beta_1 + \mu_1 a_1) + f_0 e^{i(\sigma_1 \tau_1 - \beta_1)} + \frac{1}{2} a_1 \sum_{m=2}^{N} \frac{1}{4} a_m^2 (4\Gamma_{m1 mn} + 2\Gamma_{m1 mn}) + \frac{3}{8} a_1^3 \Gamma_{1111} = 0\]

(41)

For \(n \geq 2 \)

\[-i\omega_n (a'_n + ia_n \beta_n + \mu_n a_n) + \frac{1}{2} a_n \sum_{m=1, m \neq n}^{N} \frac{1}{4} a_m^2 (4\Gamma_{mn mn} + 2\Gamma_{mn mn}) + \frac{3}{8} a_n^3 \Gamma_{mn mn} = 0\]

(42)

Collecting real terms and imaginary terms in Eq. (41) yields

\[-\omega_1 (a'_1 + \mu_1 a_1) + f_0 \sin(\sigma_1 \tau_1 - \beta_1) = 0\]

(43)

\[\omega_1 a_1 \beta_1 + f_0 \cos(\sigma_1 \tau_1 - \beta_1) + \frac{1}{2} a_1 \sum_{m=2}^{N} \frac{1}{4} a_m^2 (4\Gamma_{m1 mn} + 2\Gamma_{m1 mn}) + \frac{3}{8} a_1^3 \Gamma_{1111} = 0\]

(44)

and repeating the same for Eq. (42) yields

\[-\omega_n (a'_n + \mu_n a_n) + f_0 \sin(\sigma_n \tau_n - \beta_n) = 0\]

(45)

\[\omega_n a_n \beta_n + f_0 \cos(\sigma_n \tau_n - \beta_n) + \frac{1}{2} a_n \sum_{m=2}^{N} \frac{1}{4} a_m^2 (4\Gamma_{mn mn} + 2\Gamma_{mn mn}) + \frac{3}{8} a_n^3 \Gamma_{1111} = 0\]

(46)

Substituting Eq. (45) and the steady-state motion conditions \((a'_1 = 0 \text{ and } \gamma_1 = \sigma_1 \tau_1 - \beta_1 = \text{constant} \) (i.e., for \(\gamma'_1 = 0, \beta'_1 = 0 \)) into Eqs. (43) and (44) yields the following modulation equations:

\[\omega_1 \mu_1 a_1 = f_0 \sin \gamma_1\]

(47)

\[\omega_1 a_1 \sigma_1 + f_0 \cos \gamma_1 + \frac{3}{8} a_1^3 \Gamma_{1111} = 0\]

(48)

The detuning parameter is obtained by eliminating \(\gamma \) from Eqs. (47) and (48). It is given as

\[\sigma_1 = -\frac{3}{8} \frac{a_1^2}{\omega_1} \Gamma_{1111} \pm \sqrt{\frac{f_0^2}{\omega_1^2 a_1^2} - \frac{\mu_1^2}{a_1^2}}\]

(49)

where \(a_1 \) and \(\mu_1 \) are the amplitude of the complex function and damping ratio corresponding to the fundamental mode (\(\omega_1 \)), respectively. The right branch of the frequency-response curve is obtained when the discriminant is added while its subtraction produces the left branch.

\[\Gamma_{1111} = -\frac{1}{2} \frac{2}{\Gamma_{1111}} \left[\left(\int_{0}^{\tau_1} \frac{X_1}{Y_1} \right)^{2} \left(\int_{0}^{\tau_1} \frac{X_2}{Y_2} \right)^{2} \right]\]

\[= -\frac{1}{2} \left[\left(\int_{0}^{\tau_1} \frac{X_1}{Y_1} \right)^{2} + \left(\int_{0}^{\tau_1} \frac{X_2}{Y_2} \right)^{2} \right]\]

6 Experimental Procedure

Figure 3 shows a schematic of the experimental setup. The experimental setup and procedure were performed according to IEEE guide [25]. The geometric and material properties of the three tested Stockbridge dampers are tabulated in Table 1. The Stockbridge damper was mounted on an electrodynamics shaker (B\&K 4802). A load cell (Dynatran60V1) was installed between the shaker and the fixture to measure the delivered force, and an accelerometer (B\&K) was placed at the clamp to measure the acceleration of the damper. The load cell and accelerometer were connected to a dynamic signal analyzer through charge amplifiers. Signal processing and data acquisition functions were via a dynamic signal analyzer (PCI-6034E).

Using the forced response method (see IEEE guide [25]), the tests were conducted for various excitation frequencies in the range of wind-induced vibration frequencies (sweep). This frequency range was confined to frequencies greater than 10 Hz because of constraints on the shaker. The recorded frequency-response curve was then used to determine the natural frequencies. The peaks in the amplitude portion of the frequency-response function give the natural frequencies of the damper.

![Fig. 3 Schematic of experimental setup](image-url)
7 Numerical Simulations

The numerical simulations are based on the parameters listed in Table 1. The linear natural frequencies are determined by numerically solving for the roots of the frequency equation (Eq. (14)) using the bisection method in MATLAB, and the nonlinear frequencies are obtained using Eq. (35). The first five natural frequencies for each damper are tabulated in Table 2. The nonlinear frequencies show better agreement with the experimentally obtained frequencies. This is, however, dependent on the selection of the initial displacement a_0. It is noted that the symmetric damper exhibits two resonant frequencies and the asymmetric damper exhibits four.

Figures 4–6 depict the first five mode shapes of Dampers 1, 2, and 3, respectively. The left and right segment corresponds to the left- and right-hand side messenger, respectively. The figures show that the first four mode shapes of the damper are similar to the first mode shape of a cantilevered beam except that in this case there are two segments. For the damper fifth mode shape, the right-side segment corresponds to the second mode of a cantilevered beam, while the left-side segment is similar to the first mode shape.

The parameter of Damper 1 is employed in the remainder of the numerical simulations to investigate the effect of the damper mass and rotatory inertia on the resonant frequencies and response of the damper. For a given total mass ($M_1 + M_2 = 5$ kg) and total rotatory inertia 0.032 kg/m2, the natural frequencies for various ratios of counterweight and rotatory are tabulated in Table 3. It is observed that the odd modes (i.e., first, third, and fifth) monotonically decrease with increasing ratio. The even modes (second and fourth) do not exhibit this monotonically decrease; they decrease to a certain point and then increase. In Fig. 7, the variation of the fundamental nonlinear frequency with vibration amplitude is examined for various identical ratios of the counterweight mass and rotatory inertia ($M_2/M_1 = J_2/J_1$). The nonlinear frequency is observed to increase with increasing ratio of the counterweight mass and rotatory inertia. It is also observed that the nonlinear frequency increases with increasing vibration amplitude.

The frequency-response curves for the forced vibration analyses are based on Eq. (49). Because the nonlinearity is due to

Table 1 Material properties and parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Damper 1</th>
<th>Damper 2</th>
<th>Damper 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_2 (kg)</td>
<td>2.5</td>
<td>3.5</td>
<td>1.3</td>
</tr>
<tr>
<td>m_1 (kg)</td>
<td>2.5</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>J_1 (kg/m2)</td>
<td>0.016</td>
<td>0.02</td>
<td>0.012</td>
</tr>
<tr>
<td>J_2 (kg/m2)</td>
<td>0.016</td>
<td>0.012</td>
<td>0.0075</td>
</tr>
<tr>
<td>EI (N m2)</td>
<td>32</td>
<td>54.8</td>
<td>39.981</td>
</tr>
<tr>
<td>L_2 (m)</td>
<td>0.26</td>
<td>0.32</td>
<td>0.2</td>
</tr>
<tr>
<td>L_1 (m)</td>
<td>0.26</td>
<td>0.225</td>
<td>0.14</td>
</tr>
<tr>
<td>m (kg/m)</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2 Analytical versus experimental natural frequencies (Hz)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Linear ($a = 1, k = 1.0001$)</th>
<th>Nonlinear ($a = 2, k = 1.0001$)</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damper 1</td>
<td>6.7023</td>
<td>6.9222</td>
<td>7.5818</td>
</tr>
<tr>
<td>2</td>
<td>30.7985</td>
<td>32.2457</td>
<td>36.5871</td>
</tr>
<tr>
<td>3</td>
<td>597.9306</td>
<td>600.9617</td>
<td>610.0548</td>
</tr>
<tr>
<td>4</td>
<td>1644.3994</td>
<td>1648.7673</td>
<td>1661.8712</td>
</tr>
<tr>
<td>5</td>
<td>3222.1581</td>
<td>3227.2717</td>
<td>3242.6124</td>
</tr>
<tr>
<td>Damper 2</td>
<td>5.6414</td>
<td>5.7116</td>
<td>5.8332</td>
</tr>
<tr>
<td>3</td>
<td>31.0769</td>
<td>31.2549</td>
<td>31.8130</td>
</tr>
<tr>
<td>4</td>
<td>52.9042</td>
<td>53.1911</td>
<td>53.9483</td>
</tr>
<tr>
<td>5</td>
<td>366.6549</td>
<td>367.0695</td>
<td>367.8402</td>
</tr>
<tr>
<td>2</td>
<td>25.1866</td>
<td>25.7626</td>
<td>27.4907</td>
</tr>
<tr>
<td>3</td>
<td>51.1492</td>
<td>52.0230</td>
<td>54.6445</td>
</tr>
<tr>
<td>4</td>
<td>96.2231</td>
<td>97.0424</td>
<td>99.5003</td>
</tr>
<tr>
<td>5</td>
<td>802.2775</td>
<td>803.3742</td>
<td>806.6444</td>
</tr>
</tbody>
</table>
geometric stretching, it is expected that the frequency-response curve will stretch/bend to the right, which is indicative of a hardening-type nonlinearity. For a damping coefficient of $\mu_1 = 0.001$, Fig. 8 depicts the frequency-response curves for various forces ($f_0 = 1, 0.9, \text{and } 0.8$). The results in this figure indicate that the stretching of the curve and the amplitude response decrease with decreasing f_0. It is also noted that the lowest excitation amplitude ($f_0 = 0.8$) resulted in the highest asymmetrical curve from the reference point ($\sigma_1 = 0$).

In Fig. 9, the role of the damper coefficient is examined for a constant excitation amplitude ($f_0 = 1$). The frequency-response curves indicate that both vibration amplitude and the stretching decrease with increasing μ_1. This implies that damping ratio is a key parameter in ascertaining the extent of the geometric nonlinearity. The effect of the ratio of the right to left counterweight mass and rotatory inertia on the frequency-response curve is depicted in Fig. 10 for a given excitation amplitude $f_0 = 1$ and damping coefficient $\mu_1 = 0.05$. It is seen that nonlinearity stretching increases with increasing ratio and that the vibration amplitude is highest for the highest ratio.

<table>
<thead>
<tr>
<th>m_2/m_1</th>
<th>J_2/J_1</th>
<th>Mode</th>
<th>Linear</th>
<th>Nonlinear ($a = 2, k = 1.0001$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1</td>
<td>6.5649</td>
<td>6.7243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.7186</td>
<td>8.9210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.5317</td>
<td>28.2620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.9011</td>
<td>44.9629</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>452.3470</td>
<td>453.7662</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>6.7539</td>
<td>6.9150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.1916</td>
<td>7.3599</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.1661</td>
<td>30.9547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34.0999</td>
<td>34.9755</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>450.8476</td>
<td>451.8205</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>5.5383</td>
<td>5.6863</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.2983</td>
<td>8.4888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.9550</td>
<td>28.6887</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34.7860</td>
<td>35.6731</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>449.5268</td>
<td>450.9007</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1</td>
<td>4.8005</td>
<td>4.9473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.1268</td>
<td>10.3636</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24.2538</td>
<td>24.8932</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>42.4584</td>
<td>43.4856</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>449.0536</td>
<td>450.4522</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1</td>
<td>4.3832</td>
<td>4.5321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.0846</td>
<td>13.4066</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.1385</td>
<td>22.7211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>54.7567</td>
<td>55.9429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>448.8151</td>
<td>450.2559</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Variation of fundamental nonlinear frequency with vibration amplitude

Fig. 8 Frequency-response curve for varying f_0 and constant damping

Fig. 9 Frequency-response curve for varying μ_1 and constant force

Fig. 10 Effect of the counterweight mass and rotational inertia
8 Conclusions

A nonlinear model is presented for a Stockbridge damper. The nonlinearity is due to the geometric stretching and damping coefficient of the messenger cable. The Stockbridge damper is modeled as a two cantilevered beams with tip masses. Hamilton’s principle is employed to derive the equation of motion and boundary conditions. Explicit expressions are presented for the frequency equation, mode shapes, nonlinear frequency, and modulation equations. Experiments are conducted to measure the damper resonant frequencies and to validate the proposed analytical model. The proposed model is applicable to both asymmetric and symmetric Stockbridge dampers. Numerical simulations show that both the nonlinear frequency and vibration amplitude are significantly affected by the counterweight mass and rotatory inertia. It is also observed that the damping coefficient is an important factor in determining the influence of the geometric stretching of the messenger. Most importantly, the present model can be used by design engineers to predict the dynamics of Stockbridge dampers.

Acknowledgment

The financial support from Hydro One, Inc. is gratefully acknowledged.

References