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Abstract. For 1 < p < ∞, a new projection operator is constructed from the Lp space of
a Reinhardt domain to the Lp-Bergman space, by emulating the representation of the usual
L2-Bergman projection as an orthogonal series, but by using a monomial Schauder basis
of the Lp-Bergman space instead of the L2 orthonormal basis of the standard L2-Bergman
space. Such a projection operator is expected to have better Lp-mapping behavior than
the classical Bergman projection. The existence and superior mapping properties of this
new operator are verified on a class of domains on which the classical Bergman projection
has poor behavior. On this class of domains, the dual of the Lp-Bergman space is identified
with an Lq-Bergman space with weight.

1. Introduction

1.1. The Bergman projection on Lp. Given a domain Ω ⊂ Cn, the Bergman projection
BΩ is the orthogonal projection from L2(Ω) onto the Bergman space A2(Ω) = L2(Ω)∩O(Ω),
the subspace of holomorphic square-integrable functions. The Bergman projection can be
represented by integration against the Bergman kernel :

BΩf(z) =

∫
Ω
BΩ(z, w)f(w)dV (w), f ∈ L2(Ω), (1.1)

where dV stands for the Lebesgue measure. The Bergman kernel enjoys remarkable repro-
ducing, invariance and extremal properties and is closely related to the ∂̄-Neumann problem
(see e.g. [Ber70, FK72, Kra13], etc.). These properties make the Bergman kernel an impor-
tant tool in the study of boundary behavior of holomorphic functions and maps. Bergman
spaces can be naturally defined on all complex manifolds, in contrast with Hardy spaces,
whose construction is tied to distinguished measures on the boundary of a domain, e.g., the
Haar measure on the unit circle in the case of the classical Hardy space Hp(D).

Inspired by Hardy spaces, it is natural to consider the space of p-th power integrable
holomorphic functions Ap(Ω) of a domain Ω ⊂ Cn. These have also been known as (Lp-)
Bergman spaces since the 1970s, though S. Bergman only studied the square integrable
setting. In view of M. Riesz’s classical result on the Lp-boundedness of the Szegő projection
for 1 < p < ∞, it is also natural to ask whether the Bergman projection (restricted to
L2(Ω) ∩ Lp(Ω)) can be continuously extended as a bounded linear projection operator BΩ

p

from Lp(Ω) onto Ap(Ω). When Ω is a ball in Cn, this turns out to be the case (see [ZJ64,
FR74]), and the same remains true in many classes of smoothly bounded pseudoconvex
domains ([PS77, NRSW89, MS94, McN94] etc.) In these cases, the extended operator
turns out to be even absolutely bounded, in the sense that the associated operator

(BΩ
p )

+f(z) =

∫
Ω

∣∣BΩ(z, w)
∣∣ f(w)dV (w), f ∈ Lp(Ω),
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is a bounded linear operator on Lp(Ω). The proofs typically use some version of Schur’s
test for the Lp-boundedness of an operator defined by a positive integral kernel (see Propo-
sition 5.11 below).

On the other hand, there are many examples of domains for which the extended Bergman
projection BΩ

p fails to define a bounded projection from Lp(Ω) onto Ap(Ω) for some (and
sometimes for all!) p ̸= 2 (see [Bar84, FKP99, FKP01, Zey13, EM17] and the survey
[Zey20]). Recent studies of the Bergman projection in certain classes of Reinhardt domains
([CZ16, Edh16, EM16, Che17, CEM19, EM20, HW20, Zha21a, Zha21b, Mon21, BCEM22]
etc.) shed more light on this phenomenon, revealing that the Lp-behavior of the Bergman
projection that one sees on, e.g., strongly pseudoconvex domains (see [PS77]) breaks down
on bounded Reinhardt domains whose boundary passes through the center of rotational
symmetry, a simple example being the well-known Hartogs triangle {|z1| < |z2| < 1} ⊂ C2.
In such a bounded domain it is possible that there are indices 1 < p1 < p2 < ∞ such that
the linear subspace Ap2(Ω) is not dense in the Bergman space Ap1(Ω). This phenomenon
is impossible in smoothly bounded pseudoconvex domains (see [Cat80]), and may perhaps
constitute a glimpse of an Lp-function theory where the geometry of the Banach space Lp

replaces the Hilbert space idea of orthogonality. In the Reinhardt domains studied in this
paper, Laurent series representations can be used to clarify some of these phenomena. For
example, the fact that Ap2(Ω) is not necessarily dense in Ap1(Ω) can be thought to be
a manifestation of the fact that there may be Laurent monomials whose p1-th power is
integrable but not the p2-th power.

One of the first tasks of such an Lp-function theory would be to study possible analogs
of the Bergman projection and kernel. In this paper, we take the point of view that the
extended Bergman projection BΩ

p does not necessarily constitute the best solution to the
problem of constructing a projection operator from Lp(Ω) onto Ap(Ω). We propose that a
different operator, which we call the Monomial Basis Projection (MBP) may be expected
to have better behavior. This projection can be represented as an integral operator against
the Monomial Basis Kernel (MBK). We now explain the construction of these objects.

1.2. Projection operators associated to bases. Let L be a Hilbert space, let A be a
closed subspace of L and let {ej} be a complete orthogonal set in A. (All Hilbert or Banach
spaces in this paper are assumed to be separable.) Letting ϕj =

ej
∥ej∥ , we see that {ϕj} is an

orthonormal basis of A, and the orthogonal projection P from L to A may be represented
by the series convergent in the norm of L:

Px =
∑
j

⟨x, ϕj⟩ϕj =
∑
j

⟨x, ej⟩ ej
∥ej∥2

, x ∈ L. (1.2)

Since Px is defined geometrically as the point in A nearest to x, this representation is
independent of the particular complete orthogonal set {ej}. When L = L2(Ω), A = A2(Ω),
(1.2) leads to the well-known formulas for the Bergman kernel

BΩ(z, w) =
∑
j

ϕj(z)ϕj(w) =
∑
j

ej(z)ej(w)

∥ej∥2
.

The analog of a complete orthogonal set of a Hilbert space in the setting of a general
Banach space is a Schauder basis (see [LT77]). A sequence {ej}∞j=1 in a complex Banach

space A is called a Schauder basis if for each x ∈ A, there is a unique sequence {cj}∞j=1 of

complex numbers such that x =
∑∞

j=1 cjej , where the series converges in the norm-topology

of A. In fact, there are bounded linear functionals aj : A → C such that cj = aj(x),

generalizing the Fourier coefficients aj(x) =
⟨x,ej⟩
∥ej∥2

in the special case when A is Hilbert.
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When L is a Banach space, A a closed subspace, and {ej}∞j=1 a Schauder basis of A, one

might attempt to define a projection operator from L onto A by emulating (1.2):

Px =
∑
j

ãj(x)ej , x ∈ L, (1.3)

where ãj : L→ C is a Hahn-Banach (norm-preserving) extension of aj : A→ C, generalizing
the functional x 7→ ⟨x,ej⟩

∥ej∥2
on L that occurs in (1.2). When it exists, we call a projection

operator of the type in (1.3) a basis projection determined by the Schauder basis {ej}.
If T is the unit circle with the Haar measure, the classical Szegő projection from Lp(T)

onto the Hardy space Hp(D) for 1 < p <∞ is in fact a basis projection (see Proposition 2.9
below) and our goal in this paper is to construct basis projections from Lp(Ω) to Ap(Ω),
where Ω is a Reinhardt domain.

Note that if p ̸= 2, the classical attempt to extend the Bergman projection to Lp by
continuity, even when successful, leads to a projection operator which is not a basis projec-
tion; see Proposition 4.3. This is an underlying reason for the deficiencies of the Bergman
projection in Lp-spaces.

1.3. The Monomial Basis Projection. Formula (1.3) is purely formal, as there is no
guarantee that, given a Schauder basis of subspace, a basis projection onto the subspace
determined by the given basis exists. Several technical obstacles need to be overcome to
actually construct a basis projection onto the Lp-Bergman space of a Reinhardt domain:

(1) Unlike an orthogonal projection, the basis projection of (1.3) depends not only on
the range subspace A of the projection, but also (in principle) on the choice of the Schauder
basis {ej} determining the projection. A Banach space need not have a Schauder basis,
but in the Bergman space Ap(Ω) of a Reinhardt domain Ω ⊂ Cn, there is a distinguished
Schauder basis closely tied to geometry and function theory. This is the collection of Laurent
monomials in Ap(Ω), the functions z 7→ zα1

1 zα2
2 . . . zαn

n where αj ∈ Z, 1 ≤ j ≤ n. The fact
that these monomials form a Schauder basis was proved in [CEM19], and is recalled in
Theorem 2.16 below in a slightly more general form. The projection operator from Lp(Ω)
to Ap(Ω) defined in terms of this “monomial basis” by formula (1.3) is the main topic of
this paper, and will be called the Monomial Basis Projection (MBP).

(2) A Hahn-Banach extension of a linear functional in general is far from unique, but
in our application, where we extend functionals defined on Ap(Ω) to Lp(Ω), we do have
uniqueness; see Propositions 2.3 and 2.4 below. This means P is unambiguously defined
by (1.3) once the order of summation of the multiple series is clarified.

(3) Such a projection P would not only be tied to the Schauder basis elements {ej}, but
also to their ordering, as the convergence of the series in (1.3) is in general conditional. This
is analogous, and related to, the conditional convergence of multiple Fourier series in Lp(Tn)
(see, e.g., [Kra99]). An exception to the conditional convergence of (1.3) is when L is a
Hilbert space, when the convergence is unconditional, i.e., the series converges no matter
how it is rearranged. Further, the Laurent monomials z 7→ zα1

1 zα2
2 . . . zαn

n with respect to
which the MBP is defined, are indexed by the associated multi-index α = (α1, . . . , αn) ∈ Zn

and do not admit a natural linear ordering. In order to accommodate these complexities, we
begin by extending the notions of Schauder bases and basis projections, using multi-indices
and specifying the kinds of partial sums that are allowed in the series representation with
respect to the basis (see Section 2 and in particular Definitions 2.1 and 2.6). It turns out
that in spite of conditional convergence, we still have a great deal of freedom in rearranging
the summation order in the series representation of the MBP, which comes from the integral
representation of the MBP (see Section 4.2 below). This is useful in proving facts about
the MBP, such as the transformation law in Theorem 6.27.
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(4) None of this guarantees the formal series (1.3) converges for each x ∈ L. Showing
that (1.3) defines a bounded operator on L requires us to show by direct estimation that
the partial summation operators are uniformly bounded in the operator norm on L. In our
application to Bergman spaces, the problem is simplified because of the availability of an
integral representation of the MBP, and in an interesting class of domains we will prove not
only the existence of the MBP, but also its absolute boundedness, i.e., the boundedness of
the operator defined by the absolute value of the integral kernel representing the MBP. As
we remarked earlier, this is a property of the Bergman projection on many domains.

1.4. General notation, definitions and conventions. We pause to introduce notation
and definitions to be used throughout the paper.

(1) Unless otherwise indicated, Ω will denote a bounded Reinhardt domain in Cn with
center of symmetry at 0. Let |Ω| ⊂ Rn denote its Reinhardt Shadow, i.e., the set of points

|Ω| = {(|z1| , . . . , |zn|) ∈ Rn : z ∈ Ω}.

(2) We always assume that the index p satisfies 1 < p < ∞, and let q be the index
Hölder-conjugate to p, i.e. 1

p + 1
q = 1.

(3) For a domain U ⊂ Cn and a measurable function λ : U → [0,∞] which is positive
a.e. (the weight), we set for a measurable function f :

∥f∥pLp(U,λ) = ∥f∥pp,λ =

∫
U
|f |p λ dV, (1.4)

where, dV denotes the Lebesgue measure, and functions equal a.e. are identified. We let
Lp(U, λ) be the space of functions f for which ∥f∥p,λ < ∞, which is well-known to be a
Banach space in its natural norm.

Let Ap(U, λ) be the subspace of Lp(U, λ) consisting of holomorphic functions:

Ap(U, λ) = Lp(U, λ) ∩ O(U).

We will only consider weights λ : U → [0,∞] which are admissible in the sense that
Bergman’s inequality holds in Ap(U, λ), i.e., for each compact set K ⊂ U , there is a constant
CK > 0 such that for each f ∈ Ap(U, λ) we have

sup
K

|f | ≤ CK ∥f∥Lp(U,λ) . (1.5)

It is easy to see that if λ is a positive continuous function on U then it is an admissible
weight on U ; we also consider more general admissible weights.

If λ is an admissible weight on U , a standard argument shows that Ap(U, λ) is a closed
subspace of Lp(U, λ), and therefore a Banach space. It is called a weighted Bergman space
on U with weight λ, and generalizes the unweighted Ap-spaces from Section 1.1.

(4) We are interested in Reinhardt domains Ω and phenomena which are invariant under
the Reinhardt (rotational) symmetry of Ω. Therefore, we consider only those weights λ
on Ω which are admissible, and multi-radial in the sense that there is a function ℓ on the
Reinhardt shadow |Ω| such that

λ(z1, . . . , zn) = ℓ(|z1| , . . . , |zn|),

so that λ depends only on the absolute values of the coordinates.
(5) For α ∈ Zn, we denote by eα the Laurent monomial of exponent α:

eα(z) = zα1
1 . . . zαn

n . (1.6)

(6) We define the set of p-allowable indices with respect to λ to be the collection

Sp(Ω, λ) = {α ∈ Zn : eα ∈ Lp(Ω, λ)} . (1.7)
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(7) If λ ≡ 1, we abbreviate Lp(Ω, 1), Ap(Ω, 1) and Sp(Ω, 1) by L
p(Ω), Ap(Ω) and Sp(Ω),

respectively.
(8) The map χp : Cn → Cn defined as

χp(ζ) =
(
ζ1 |ζ1|p−2 , · · · , ζn |ζn|p−2

)
(1.8)

arises naturally in our investigations, and will be referred to as the twisting map. Notice
that for p = 2, the twisting map reduces to the identity. For a function f we denote by χ∗

pf
its pullback under χp:

χ∗
pf = f ◦ χp. (1.9)

1.5. The Monomial Basis Kernel. When it exists, the MBP of Ap(Ω, λ) is a bounded
surjective projection and will be written PΩ

p,λ : Lp(Ω, λ) → Ap(Ω, λ). With the aim of a

representation of the MBP by an integral formula analogous to (1.1), we define theMonomial
Basis Kernel of Ap(Ω, λ) (abbreviated MBK ) by the formal series on Ω× Ω given as:

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z) · χ∗
peα(w)

∥eα∥pp,λ
. (1.10)

For p = 2, the MBK KΩ
2,λ is the classical weighted Bergman kernel BΩ

λ of A2(Ω, λ), and the

series (1.10) converges uniformly on compact subsets of Ω × Ω. For a general 1 < p < ∞,
we show in Theorem 3.6 that when Ω is pseudoconvex, the series (1.10) converges locally
normally on Ω × Ω, so the unordered sum makes sense. The similarity of the definition of
the MBK with the series representation of the Bergman kernel means that many properties
of the latter have “twisted” analogs for the MBK; see Section 3.4. The MBK affords an
integral representation of the MBP when it exists, by the formula

PΩ
p,λ(f)(z) =

∫
Ω
f(w)KΩ

p,λ(z, w)λ(w)dV (w), f ∈ Lp(Ω, λ).

See Theorem 4.1 and Proposition 4.10 below.
When PΩ

p,λ is absolutely bounded on Lp(Ω, λ) in the sense of Definition 4.23 below, we

can give a natural description of the dual of Ap(Ω, λ) as a space of holomorphic functions,

as a weighted Bergman space on a Reinhardt domain Ω(p−1) associated to the domain Ω;
see Proposition 4.36 below. The duality is realized in terms of the “twisted pairing”

{f, g}p,λ =

∫
Ω
f · χ∗

p(g)λ dV,

rather than the usual L2-style paring of spaces, where the notation is as in (1.8) and (1.9).

1.6. Transformation laws. Bell’s transformation law ([Bel81, Bel82]) for the Bergman
kernel under proper holomorphic maps is a key ingredient in the study of the boundary
behavior of proper holomorphic mappings. In the setting of Reinhardt domains, the holo-
morphic maps we need to consider should preserve the Reinhardt structure, and therefore
are the monomial maps, each of whose components is a monomial function (see Section 6.3
below, and [NP21, BCEM22]). Monomial maps define proper holomorphic maps which are
of “quotient type”, i.e. there is an abelian group Γ of biholomorphic automorphisms such
that the monomial mapping Φ : Ω1 → Ω2 may be identified with the natural projection
onto the quotient Ω1/Γ, which is biholomorphic to Ω2. In Section 6 below we study the
transformation of the MBP by monomial maps, leading to the transformation law of Theo-
rem 6.27. A technical issue in these results arises from the conditional convergence of series
that need to be rearranged, but this issue is resolved by Corollary 4.22.
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We go on to prove in Section 7.2 a transformation law for the Absolute Monomial Basis
Operator (abbreviated AMBO), the integral operator with kernel given by the absolute
value of the MBK. Notice that if BU : U × U → C is the Bergman kernel of a (not
necessarily Reinhardt) domain U in Cn, then we can reconstruct BU from the nonnegative
function AU =

∣∣BU
∣∣ on U × U . Further, if ϕ : U → V is a biholomorphic mapping, we

have, by taking absolute values in the formula for biholomorphic transformation of Bergman
kernels, and using the relation detDϕ = |detϕ′|2 between the real and the complex Jacobian
determinants, the transformation law

AU (z, w) = (detDϕ(z))
1
2AV (ϕ(z), ϕ(w))(detDϕ(w))

1
2 , z, w ∈ Ω1.

This relation (which can be invariantly interpreted in terms of external tensor products of
1
2 -density bundles) immediately leads to a transformation law for the absolute Bergman

operators of U and V (i.e. the integral operators whose kernels are AU and AV , respec-
tively.) We prove an analogous transformation law for the AMBO under monomial maps
in Theorem 7.11. This result, apart from its intrinsic interest, plays a crucial role in the
proof of absolute boundedness on monomial polyhedra in Section 8.

1.7. Explicit examples in one and several dimensions. In Section 5 and Section 8
we give actual examples of Reinhardt domains on which the MBP both exists and exhibits
better behavior than the Lp-extended Bergman projection. In Section 5 we show that for
1 < p <∞, the MBP on the disc and the punctured disc exist, are absolutely bounded and
are surjective onto the Bergman space. For the disc, this shows that the Lp-behavior of the
MBP is at least as good as that of the classical Bergman projection. For the punctured
disc, the behavior is better, since the classical Bergman projection is not surjective onto
Ap(D∗) if 1 < p < 2, despite it being a bounded operator on Lp(D∗).

In Section 8 we consider nonsmooth pseudoconvex Reinhardt domains called monomial
polyhedra (see [NP09, BCEM22]). A bounded domain U ⊂ Cn is a monomial polyhedron
in our sense, if there are exactly n monomials eα1 , . . . , eαn (see (1.6) for notation) such that

U = {z ∈ Cn : |eα1(z)| < 1, . . . , |eαn(z)| < 1} .

The ur-example of a monomial polyhedron is the Hartogs triangle H = {|z1| < |z2| < 1} ⊂
C2. In [BCEM22] it was shown that there is an integer κ(U ) associated to each monomial
polyhedron U such that the Bergman projection is bounded in the Lp-norm if and only if

2κ(U )

κ(U ) + 1
< p <

2κ(U )

κ(U )− 1
. (1.11)

A key ingredient of the proof is a “resolution of singularities” of a monomial polyhedron
by a proper holomorphic map of quotient type (see Proposition 8.5). In contrast, this same
resolution of singularities is used to prove Theorem 8.1 below, to show that the MBP is
even absolutely bounded on Lp(U ) for each 1 < p <∞. This leads to the representation of
the dual space Ap(U )′ as a weighted Bergman space on U (see Theorem 8.24).

In Section 9 there is a detailed discussion of the deficiencies of the Lp-extended Bergman
projection in certain model settings. This gives an opportunity for a side-by-side comparison
of the Bergman projection and the Monomial Basis Projection, where the failures of the
former properly frame the successes of the latter.

1.8. Conclusions and future work. Since Barrett’s work on a nonpseudoconvex “worm”
domain with Hartogs symmetry ([Bar84]), and especially after the recent results on singular
Reinhardt domains mentioned above, the failure of the Bergman projection on certain
domains to satisfy Lp-estimates has seemed to indicate fundamental problems with the
definition of the projection operator on Lp-Bergman spaces. Here, we suggest a possible way
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of resolving this puzzle by redefining the projection operator from Lp to Ap, and showing
that this idea gives good results for at least one class of interesting domains. The next
step in this investigation should be to extend this to further classes of interesting domains,
such as the “irrational Hartogs triangles” (see [EM17]), smoothly bounded pseudoconvex
Reinhardt domains, etc. It will also be interesting to extend this idea to Hartogs domains
in the natural way, and see what this means for the original Barrett example.

2. The Monomial Basis Projection

2.1. Schauder bases. Since our application will use bases indexed by multi-indices, we
introduce a slightly more general notion of a Schauder basis than the classical one described
above in Section 1.2. For a multi-index α ∈ Zn, let |α|∞ = max1≤j≤n |αj |.

Definition 2.1. Let A be a Banach space, n a positive integer and A ⊂ Zn a set of multi-
indices. A collection {eα : α ∈ A} of elements of A is said to form a Schauder basis of A if
for each f ∈ A, there are complex numbers {cα : α ∈ A} such that

f = lim
N→∞

∑
|α|∞≤N
α∈A

cαeα, (2.2)

where the sequence of partial sums converges to f in the norm-topology of A.

The sums on the right hand side of (2.2) whose limit is taken are called square partial
sums. More general partial sums can be considered in this definition, and will be needed in
Section 4.2 below.

Adapting the classical proof ([LT77, Proposition 1.a.2]), is not difficult to see that for
each α ∈ A, the map aα : A → C assigning to an element x ∈ A the coefficient cα of the
series (2.2) is a bounded linear functional on A. The collection of functionals {aα : α ∈ A}
is called the set of coefficient functionals dual to the basis {eα : α ∈ A}. In the literature,
they are also called biorthogonal functionals or coordinate functionals.

2.2. Unique Hahn-Banach extension. Recall that a normed linear space is said to be
strictly convex, if for distinct vectors f, g of unit norm, we have ∥f + g∥ < 2, i.e. the
midpoint of a chord of the unit sphere of A lies in the open unit ball. We will need the
following simple observation:

Proposition 2.3 ([Tay39]). If L is a Banach space such that its normed dual L′ is strictly
convex, and f : A → C is a bounded linear functional on a subspace A ⊂ L, then f admits
a unique norm-preserving extension as a linear functional on L.

Proof. That at least one functional extending f and having the same norm exists is the
content of the Hahn-Banach theorem. Without loss of generality, the norm of f as an
element of A′ is 1. Suppose that f admits two distinct extensions f1, f2 ∈ L′ such that
∥f1∥L′ = ∥f2∥L′ = 1. Then g = 1

2(f1 + f2) is yet another extension of f to an element of
L′, so ∥g∥L′ ≥ ∥f∥A′ = 1. On the other hand, thanks to the strict convexity of L′, we have

∥g∥L′ < 1
2 · 2 = 1. This contradiction shows that f1 = f2. □

The examples of unique Hahn-Banach extensions in this paper arise from the following:

Proposition 2.4. Let (X,F , µ) be a measure space, and 1 < p <∞. The dual of Lp(µ) is
strictly convex.

Proof. Since the dual of Lp(µ) can be isometrically identified with Lq(µ) where q is the
exponent conjugate to p, it suffices to check that Lq(µ) is strictly convex. Let f, g be distinct
elements of Lq(µ) such that ∥f∥q = ∥g∥q = 1. Suppose we have ∥f + g∥q = 2 = ∥f∥q+∥g∥q,
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so that we have equality in the Minkowski triangle inequality for Lq(µ). It is well-known
that equality occurs in the Minkowski triangle inequality only if f = cg for some c > 0. But
since ∥f∥q = ∥g∥q = 1 this gives that c = 1, which is a contradiction since f ̸= g. Therefore

∥f + g∥q < 2 showing that Lq(µ) is strictly convex. □

Corollary 2.5. Let A and E be closed linear subspaces of Lp(µ) where A ⊂ E. Then each
bounded linear functional on A admits a unique Hahn-Banach extension to E.

Proof. Let f : A → C be a bounded linear functional. Suppose for a contradiction, that
there are two distinct functionals f1, f2 on E extending f such that ∥f1∥ = ∥f2∥ = ∥f∥. By
the Hahn-Banach theorem, there are extensions f̃1, f̃2 of f1 and f2 respectively to Lp(µ)

such that
∥∥∥f̃1∥∥∥ =

∥∥∥f̃2∥∥∥ = ∥f1∥ = ∥f2∥ = ∥f∥. Therefore the functional f on A admits two

distinct norm-preserving extensions to all of Lp(µ) which contradicts Proposition 2.3. □

2.3. Basis projections. Let L be Banach space such that its dual is strictly convex, A
be a closed subspace, the collection {eα : α ∈ A} a Schauder basis of A in the sense of
Definition 2.1, and let {aα : α ∈ A} be the coefficient functionals dual to this Schauder
basis. Let ãα : L→ C be the unique Hahn-Banach extension of the functional aα : A→ C,
where uniqueness follows by Propositon 2.3.

Definition 2.6. A bounded linear projection operator P from L onto A is called the basis
projection determined by {eα : α ∈ A}, if for each f ∈ L, we have a series representation
convergent in the norm of L given by

P f = lim
N→∞

∑
|α|∞≤N
α∈A

ãα(f)eα. (2.7)

The following quasi-trivial observation is often useful:

Proposition 2.8. Let {eα : α ∈ A} be a Schauder basis of A and {cα : α ∈ A} a family of
nonzero complex numbers. The “scaled” collection {cαeα : α ∈ A} is also a Schauder basis
of A, and the basis projection P ′ : L→ A determined by the scaled Schauder basis exists if
and only if the basis projection P : L→ A determined by the original Schauder basis exists.
When this happens the operators coincide, i.e., P f = P ′f for every f ∈ L.

Proof. The fact that the scaled collection is a Schauder basis follows on rewriting the series
expansion of an element f ∈ A with respect to the Schauder basis:

f = lim
N→∞

∑
|α|∞≤N
α∈A

aα(f)eα = lim
N→∞

∑
|α|∞≤N
α∈A

aα(f)

cα
· (cαeα).

The statements about the basis projections with respect to the two bases follow on noting
that, thanks to the uniqueness of norm-preserving extensions, the Hahn-Banach extension
of the functional 1

cα
aα : A → C to L is given by 1

cα
ãα, where ãα is the Hahn-Banach

extension of aα as above. □

In view of Proposition 2.8, we could always assume that a Schauder basis is normalized,
i.e., each basis element has norm 1. In this case the dual coefficient functionals are also
easily seen to be normalized. However, in view of the intended application to Bergman
spaces, we choose not to make this simplification.
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2.4. The Szegő projection on Lp(T) as a basis projection. Let 1 < p < ∞, let
L = Lp(T), the Lp-space of the circle with the normalized Haar measure 1

2πdθ, and let
A = Hp(D), the Hardy space of the unit disc, the subspace of Lp(T) consisting of those
elements of Lp(T) which are boundary values of holomorphic functions in the disc. Let
τα(e

iθ) = eiαθ, α ∈ Z, denote the α-th trigonometric monomial on T. It is well-known that
{τα : α ≥ 0} is a (normalized) Schauder basis of Hp(D), i.e., the partial sums of the Fourier
series of a function in Hp(D) converge in the norm Lp(T).

Proposition 2.9. For 1 < p <∞, the basis projection from Lp(T) onto Hp(D) determined
by the Schauder basis {τα}∞α=0 exists, and is the Szegő projection.

Proof. The coefficient functionals on Hp(D) dual to the Schauder basis {τα : α ≥ 0} are
precisely the Fourier coefficient functionals {aα}∞α=0:

aα(f) =

∫ 2π

0
f(eiθ)e−iαθ dθ

2π
, f ∈ Hp(D). (2.10)

Notice that for f ∈ Hp(D), we have

|aα(f)| ≤
∫ 2π

0

∣∣∣f(eiθ)∣∣∣ dθ
2π

≤ ∥f∥Lp(T) ∥1∥Lq(T) = ∥f∥Lp(T) , (2.11)

where q is the Hölder conjugate of p, and we use Hölder’s inequality along with the fact
that the measure is a probability measure. Therefore ∥aα∥ ≤ 1. But since ∥τα∥Lp(T) = 1,

and aα(τα) = 1, it follows that ∥aα∥ = 1. We now claim that the Hahn-Banach extension
ãα : Lp(T) → C of the coefficient functional aα : Hp(D) → C is still the Fourier coefficient
functional:

ãα(f) =

∫ 2π

0
f(eiθ)e−iαθ dθ

2π
, f ∈ Lp(T).

Indeed, ãα is an extension of aα, and repeating the argument of (2.11) shows ∥ãα∥ = 1, and
thus it is a Hahn-Banach extension. Uniqueness follows from Propositions 2.3 and 2.4.

Let S denote the basis projection from Lp(T) onto Hp(D) and let f ∈ Lp(T) be a
trigonometric polynomial. Then formula (2.7) in this case becomes:

Sf(eiϕ) =

∞∑
α=0

(∫ 2π

0
f(eiθ)e−iαθ dθ

2π

)
eiαϕ =

∫ 2π

0

f(eiθ)

1− ei(ϕ−θ)
· dθ
2π
.

This shows that on the trigonometric polynomials, the basis projection coincides with the
Szegő projection, which is well-known to be represented by the singular integral at the end
of the above chain of equalities. But as the Szegő projection is bounded from Lp(T) onto
Hp(D), it follows that the basis projection exists and is equal to the Szegő projection. □

In contrast with the above, it is shown in Corollary 4.3 that the Bergman projection on a
Reinhardt domain, if it admits an extension to Lp, p ̸= 2, is necessarily different from the
corresponding basis projection determined by the monomial basis.

2.5. Invariance properties of the basis projection. Let L be a Banach space and let
{eα} be a Schauder basis of the closed subspace A. If the basis projection determined by
{eα} exists, it is determined the metric geometry of L,A and {eα}, and is consequently
preserved by isometric isomorphism. We note here that basis projections are also preserved
by a slightly more general class of maps.

If L,M are Banach spaces, by a homothetic isomorphism T : L→M we mean a bijection
such that there is a C > 0 satisfying

∥T f∥M = C ∥f∥L , for every f ∈ L. (2.12)
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Such a map clearly amounts to nothing more than a change of unit of measurement, and
thus preserves all metric relations. We record here for future use the following quasi-trivial
observation, which is obvious from the previous remark.

Proposition 2.13. Let T : L → M be a homothetic isomorphism of Banach spaces, and
suppose that the dual of L is strictly convex. Suppose that A is a closed subspace of L and
that {eα} is a Schauder basis of A. Then we have the following:

(1) The dual of M is strictly convex.
(2) T (A) is a closed subspace of M , and {T (eα)} is a Schauder basis of A.
(3) The basis projection P from L to A determined by the basis {eα} exists if and only

the basis projection Q from M to T (A) determined by the basis {T (eα)} exists.
(4) If either of the basis projections P ,Q exists (and therefore by the previous part, both

exist), then the following diagram of Banach spaces and linear operators commutes:

L M

A T (A).

T
∼=

P Q

T
∼=

2.6. The Monomial Basis Projection. On a Reinhardt domain Ω each holomorphic
function f ∈ O(Ω) has a unique Laurent expansion

f =
∑
α∈Zn

cαeα, (2.14)

where cα ∈ C and the series converges locally normally, i.e., for each compact K ⊂ Ω, the
sum

∑
α ∥cαeα∥K <∞, where ∥·∥K = supK |·| is the sup norm (see e.g. [Ran86]). It follows

that (2.14) converges uniformly on compact subsets of Ω. Define

aα : O(Ω) → C, aα(f) = cα (2.15)

where cα is as above in (2.14). The functional aα is called the α-th Laurent coefficient
functional of the domain Ω.

The following result shows that the Laurent monomials (under an appropriate ordering)
form a Schauder basis of the Bergman space Ap(Ω, λ), where Ω is a Reinhardt domain in
Cn and λ is an admissible multi-radial weight. The unweighted version of this result (the
case λ ≡ 1) was proved in [CEM19], inspired by the case of the disc considered in [Zhu91].
This more general result is proved in exactly the same way, by replacing the implicit weight
λ ≡ 1 in [CEM19, Theorem 3.11] with a general multi-radial weight λ. A key ingredient
of the proof is the fact that the Laurent polynomials are dense in Ap(Ω, λ). In [CEM19]
this is proved using a duality argument, but there is also an alternative approach based on
Cesàro summability of power series (see [CD22, Theorem 2.5].) Recall that the notation
and conventions established in Section 1.4 are in force throughout the paper.

Theorem 2.16. The collection of Laurent monomials {eα : α ∈ Sp(Ω, λ)} forms a Schauder
basis of the Bergman space Ap(Ω, λ). The functionals dual to this basis are the coefficient
functionals {aα : α ∈ Sp(Ω, λ)}, and the norm of aα : Ap(Ω, λ) → C is given by

∥aα∥Ap(Ω,λ)′ =
1

∥eα∥p,λ
. (2.17)

Thus, if f ∈ Ap(Ω, λ), the Laurent series of f written as
∑

α∈Zn aα(f)eα consists only of
terms corresponding to monomials eα ∈ Ap(Ω, λ), i.e., if α ̸∈ Sp(Ω, λ), then aα(f) = 0.

In Theorem 2.16 (see also the proof in [CEM19, Theorem 3.11]), square partial sums arise
in the following way: the uniform boundedness of the square partial sums in the operator
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norm of Lp is reduced to the boundedness of partial sums of Fourier series on functions in
Lp(Tn) of the n-dimensional torus. Square partial sums are the simplest choice of partial
sums under which such uniform boundedness in the Lp-operator norm can be proved, but it
must be emphasized that uniform boundedness in Lp still holds for other partial orderings
of monomials. This crucial point is expounded upon in Section 4.2.

We are ready to formally define the main object of this paper:

Definition 2.18. A bounded linear projection PΩ
p,λ from Lp(Ω, λ) onto Ap(Ω, λ) is called the

Monomial Basis Projection ofAp(Ω, λ), if for f ∈ Lp(Ω, λ) it admits the series representation
convergent in the norm of Lp(Ω, λ) given by

PΩ
p,λ(f) = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, (2.19)

where ãα : Lp(Ω, λ) → C is the unique Hahn-Banach extension of the coefficient functional
aα : Ap(Ω, λ) → C.

Therefore the Monomial Basis Projection is the basis projection of Definition 2.6 deter-
mined by the monomial Schauder basis {eα : α ∈ Sp(Ω, λ)}.

3. The monomial basis kernel

In this section, we introduce the Monomial Basis Kernel, prove its existence on pseudo-
convex Reinhardt domains and establish some of its properties. It will be shown in Section 4
that this kernel is the integral kernel representing the Monomial Basis Projection.

3.1. Properties of the twisting map. We begin with a list of properties of the twisting
map χp introduced in (1.8). Recall that 1 < p, q <∞ and 1

p + 1
q = 1.

(1) The map χp is a homeomorphism of Cn with itself, and its inverse is the map χq.

Proof. Notice that if w = χp(z), then for each j we have

wj |wj |q−2 = (zj |zj |p−2) ·
∣∣zj |zj |p−2

∣∣q−2
= zj |zj |p−2+(p−1)(q−2) = zj ,

since p− 2+ (p− 1)(q− 2) = pq− p− q = 0. So χq ◦χp is the identity, and similarly χp ◦χq

is also the identity. □

(2) The map χp is a diffeomorphism away from the union of the coordinate hyperplanes
{zj = 0}, 1 ≤ j ≤ n. The Jacobian determinant of χp (as a mapping of the real vector
space Cn) is given by

ηp(ζ) = det(Dχp) = (p− 1)n |ζ1 · · · · · ζn|2p−4 . (3.1)

Proof. This follows from direct computation. □

(3) Let Ω ⊂ Cn be a Reinhardt domain. Then χp restricts to a homeomorphism

χp : Ω → Ω(p−1), (3.2)

where Ω(p−1) is a Reinhardt power of Ω as in (3.9) below, which in this case becomes

Ω(p−1) =
{
z ∈ Cn :

(
|z1|

1
p−1 , . . . , |zn|

1
p−1

)
∈ Ω

}
.

Proof. Notice that in each coordinate, the map z 7→ z |z|p−2 is represented in polar coordi-

nates as reiθ 7→ rp−1eiθ. The claim now follows from the definition of Ω(p−1) above. Notice
also that from item (1) above, the map

χq : Ω
(p−1) → Ω. (3.3)

gives the inverse homeomorphism. □
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3.2. Existence of the Monomial Basis Kernel. Recall the definition of the MBK as a
formally defined series given by (1.10). Since

χ∗
peα(w) = eα

(
w1 |w1|p−2 , . . . , wn |wn|p−2

)
= (w1 |w1|p−2)α1 . . . (wn |wn|p−2)αn

= (wα1
1 · · ·wαn

n ) |wα1
1 · · ·wαn

n |p−2

= eα(w) |eα(w)|p−2 , (3.4)

we can alternatively express the MBK as the series

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)eα(w) |eα(w)|p−2

∥eα∥pp,λ
. (3.5)

We now give a sufficient condition for the convergence of this series.

Theorem 3.6. Let Ω be a pseudoconvex Reinhardt domain in Cn and λ be an admissible
multi-radial weight function on Ω. The series (3.5) defining KΩ

p,λ(z, w) converges locally
normally on Ω× Ω.

We need two lemmas for the proof of the above result. The first may itself be considered
an analog for Laurent series of the well-known Abel’s lemma on the domain of convergence
of a Taylor series ([Ran86, p. 14]):

Lemma 3.7. Let Ω ⊂ Cn be a Reinhardt domain, define S(Ω) = {α ∈ Zn : eα ∈ O(Ω)},
and for coefficients aα ∈ C, α ∈ S(Ω), let∑

α∈S(Ω)

aαeα (3.8)

be a formal Laurent series on Ω. Suppose that for each z ∈ Ω there is a C > 0 such that
for each α ∈ S(Ω) we have |aαeα(z)| ≤ C. Then the series (3.8) converges locally normally
on Ω.

Proof. See Lemma 1.6.3 and Proposition 1.6.5 of [JP08, Section 1.6]. □

Given a Reinhardt domain Ω ⊂ Cn and a number m > 0, define the m-th Reinhardt
power of Ω to be the Reinhardt domain given by

Ω(m) =
{
z ∈ Cn :

(
|z1|

1
m , . . . , |zn|

1
m

)
∈ Ω

}
, (3.9)

a particular case of which we saw in (3.2) and (3.3) above. If Ω is also assumed to be

pseudoconvex, then for each m > 0 the domain Ω(m) is also pseudoconvex. Indeed, recall
first that the logarithmic shadow of Ω is the subset log(Ω) of Rn given by

log(Ω) = {(log |z1| , . . . , log |zn|) : z ∈ Ω}. (3.10)

Recall also that Ω is pseudoconvex if and only if the set log(Ω) is convex, and Ω is “weakly
relatively complete” ([JP08, Theorem 1.11.13 and Proposition 1.11.6]). But we easily see
that the condition of weak relative completeness is preserved by the construction of Rein-
hardt powers, and

log
(
Ω(m)

)
= {(m log |z1| , . . . ,m log |zn|) : z ∈ Ω} = m log(Ω)

is itself convex, if log(Ω) is convex. So Ω(m) is pseudoconvex if and only if Ω is pseudoconvex.
The second result needed in the proof of Theorem 3.6 is the following:
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Lemma 3.11. Let A be a Banach space of holomorphic functions on Ω and suppose that
for each z ∈ Ω the evaluation functional ϕz : A → C given by ϕz(f) = f(z) for f ∈ A is

continuous. Then for m > 0, the following series converges locally normally on Ω(m):∑
α∈Zn

eα∈A

eα
∥eα∥mA

.

Proof. Let z ∈ Ω(m) so that there is ζ ∈ Ω such that |zj | = |ζj |m for each j. If ϕζ : A → C
is the evaluation functional, there is a constant C > 0 such that |ϕζ(f)| ≤ C ∥f∥A for each
f ∈ A. Then for each α ∈ Zn such that eα ∈ A we have

|eα(z)|
∥eα∥mA

=

(
|eα(ζ)|
∥eα∥A

)m

=

(
ϕζ(eα)

∥eα∥A

)m

≤ Cm.

The result now follows by Lemma 3.7. □

Proof of Theorem 3.6. Let tj = zjwj |wj |p−2, 1 ≤ j ≤ n, and t = (t1, . . . , tn). Then the
series for the MBK given in (3.5) assumes the form

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

tα

∥eα∥pp,λ
. (3.12)

Since Bergman’s inequality (1.5) holds by definition for admissible weights, the point evalu-
ations are bounded on Ap(Ω, λ). Lemma 3.11 therefore guarantees the series in (3.12) above

converges locally normally on Ω(p) defined in (3.9). It thus suffices to show that the image
of the map Ω× Ω → Cn given by

(z, w) 7−→ (t1, . . . , tn)

coincides with Ω(p), since then the image of a compact set K ⊂ Ω× Ω is a compact subset
of Ω(p), on which the series (3.12) is known to converge normally.

Now consider the logarithmic shadow log(Ω × Ω) = log(Ω) × log(Ω) defined in (3.10).
Thanks to the log-convexity of pseudoconvex Reinhardt domains, what we want to prove is
equivalent to saying that the map from log(Ω)× log(Ω) → Rn given by

(ξ, η) 7−→ ξ + (p− 1)η (3.13)

has image exactly p log(Ω) = {pθ : θ ∈ log(Ω)} = log
(
Ω(p)

)
. But since log(Ω) is convex,

the map on log(Ω)× log(Ω) given by

(ξ, η) 7−→ 1
pξ +

(
1− 1

p

)
η

has image contained in log(Ω). Taking ξ = η we see that the image is exactly log(Ω).
Therefore the image of (3.13) is precisely p log(Ω) and we have proved that the series (3.5)
converges locally normally on Ω× Ω. □

3.3. Admissible weights with singularities along the axes. Recall the notion of an
admissible weight from Section 1.4, item (3). While positive continuous functions λ are
always admissible, we also encounter multi-radial weights which may vanish or blow up
along the axes, which we show are also admissible. Let Z ⊂ Cn denote the union of the
coodinate hyperplanes

Z = {z ∈ Cn : zj = 0 for some 1 ≤ j ≤ n}.

Proposition 3.14. Let U be a domain in Cn and let U∗ = U \ Z. Suppose that λ : U →
[0,∞] is a measurable function on U such that the restriction λ|U∗ is an admissible weight
on U∗. Then λ is an admissible weight on U .
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Proof. Assume that U ∩Z ̸= ∅, since otherwise there is nothing to show, and set λ∗ = λ|U∗ .
If f ∈ Ap(U, λ), then since λ∗ is admissible on U∗, if a compact K is contained in U∗, there
exists a CK > 0 such that

sup
K

|f | ≤ CK ∥f∥Ap(U∗,λ∗) = CK ∥f∥Ap(U,λ) .

To complete the proof, we need to show that for each ζ ∈ U ∩ Z, there is a compact
neighborhood K of ζ in U such that (1.5) holds for each f ∈ Ap(U, λ). Now, there is a
polydisc centered at ζ

P = {z ∈ Cn : |zj − ζj | < r, 1 ≤ j ≤ n}

such that the closure P is contained in U . We can assume further that the radius r > 0 is
chosen so that it is distinct from each of the nonnegative numbers |ζj | , 1 ≤ j ≤ n. Then
the “distinguished boundary”

T = {z ∈ Cn : |zj − ζj | = r, 1 ≤ j ≤ n}

of this polydisc satisfies the condition that T ⊂ U∗. Therefore for each f ∈ O(U) and each
w ∈ P , we have the Cauchy representation:

f(w) =
1

(2πi)n

∫
T

f(z1, . . . , zn)

(z1 − w1) . . . (zn − wn)
dz1 . . . dzn (3.15)

where the integral is an n-times repeated contour integral on T (which is the product of
n circles). Now suppose that K is a compact subset of P containing the center ζ, and let
ρ > 0 be such that |zj − wj | ≥ ρ for each z ∈ T and w ∈ K. Then for w ∈ K, a sup-norm
estimate on (3.15) gives

|f(w)| ≤ 1

(2π)n
· supT |f |

ρn
(2πr)n ≤

(
r

ρ

)n

· ∥f∥Ap(U∗,λ∗) =

(
r

ρ

)n

· ∥f∥Ap(U,λ)

where we used the fact that λ∗ is admissible on U∗. The result follows. □

3.4. Properties of the Monomial Basis Kernel. The MBK of the space Ap(Ω, λ) co-
incides with the Bergman kernel BΩ

λ with the same weight when p = 2, and for other p it
enjoys many properties analogous to that of the Bergman kernel, up to an appearance of
the twisting function χp of (1.8). This is not surprising given the defining series (1.10).

(1) The Bergman kernel is holomorphic in the first slot, i.e., for w ∈ Ω, z 7→ BΩ
λ (z, w) is

holomorphic on Ω. Similarly, for w ∈ Ω, the function z 7→ KΩ
p,λ(z, w) is holomorphic on Ω,

since by Theorem 3.6, for each compact L ⊂ Ω the series (1.10) converges uniformly on the
set L× {w}, and the partial sums are clearly holomorphic on Ω.

(2) The Bergman kernel is anti-holomorphic in the second slot, i.e., for z ∈ Ω, the

function w 7→ BΩ
λ (z, w) is holomorphic. There is a corresponding “twisted” property of

the MBK: There is a function K̃Ω
p,λ : Ω × Ω(p−1) → C, holomorphic in the first slot and

anti-holomorphic in the second slot, such that

KΩ
p,λ(z, w) = K̃Ω

p,λ(z, χq(w)), z, w ∈ Ω.

Here the Reinhardt domain Ω(p−1) is the Reinhardt power as in (3.9). In fact,

K̃Ω
p,λ(z, ζ) =

∑
α∈Sp(Ω,λ)

eα(z) · eα(ζ)
∥eα∥pp,λ

, z ∈ Ω, ζ ∈ Ω(p−1),

and the assertion follows from Theorem 3.6 and the fact that (3.2) is a homeomorphism.
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For z ∈ Ω, the function BΩ
λ (z, ·) ∈ L2(Ω, λ). When the MBP of Ap(Ω, λ) exists, Theo-

rem 4.1 shows that KΩ
p,λ(z, ·) ∈ Lq(Ω, λ). For w ∈ Ω, the function BΩ

λ (·, w) ∈ A2(Ω, λ). One

can show that KΩ
p,λ(·, w) belongs to Ap(Ω, λ) whenever the MBP is absolutely bounded.

(3) The following generalizes the conjugate symmetry property BΩ
λ (z, w) = BΩ

λ (w, z) of
the Bergman kernel to the MBK: Suppose the weight λ on Ω is continuous and positive on
Ω. Then the weight ηq ·χ∗

qλ, where ηq = det(Dχq) is as in (3.1), is admissible on Ω(p−1) and

KΩ
p,λ (χq(z), w) = KΩ(p−1)

q,ηq ·χ∗
qλ
(χp(w), z), z ∈ Ω(p−1), w ∈ Ω. (3.16)

When λ ≡ 1 this becomes

KΩ
p,1 (χq(z), w) = KΩ(p−1)

q,ηq (χp(w), z), z ∈ Ω(p−1), w ∈ Ω.

In other words, combining the switching of variables with the twisting map χp, we still
have a form of conjugate symmetry of KΩ

p,λ, though on the right hand side we do have the

MBK of a different domain Ω(p−1) with a different weight ηq · χ∗
qλ.

Proof. Since λ is positive and continuous and ηq and χq are given by the formulas in (3.1)

and (1.8), respectively, the weight ηq · χ∗
qλ on Ω(p−1) is easily seen to be continuous and

strictly positive away from the axial hyperplanes. Thus, by Proposition 3.14 above, it is
admissible. To see (3.16), we first note that (see (3.4) above):∣∣χ∗

qeα(ζ)
∣∣p = |eα(χq(ζ))|p = |eα(ζ)|(q−1)p = |eα(ζ)|q ,

and therefore using χq to change of variables, we have

∥eα∥pLp(Ω,λ) =

∫
Ω
|eα|p λ dV =

∫
Ω(p−1)

|eα(χq(ζ))|p ηq(ζ)λ(χq(ζ)) dV (ζ)

= ∥eα∥qLq(Ω(p−1),ηq ·χ∗
qλ)

,

which in particular shows the equality of the sets Sp(Ω, λ) = Sq(Ω
(p−1), ηq ·χ∗

qλ) of allowable

indices. Therefore, from (1.10), we have for z ∈ Ω(p−1), w ∈ Ω:

KΩ
p,λ (χq(z), w) =

∑
α∈Sp(Ω,λ)

eα(χq(z))χ∗
peα(w)

∥eα∥pLp(Ω,λ)

=
∑

α∈Sq(Ω(p−1),ηq ·χ∗
qλ)

eα(χp(w))χ∗
qeα(z)

∥eα∥qLq(Ω(p−1),ηq ·χ∗
qλ)

= KΩ(p−1)

q,ηq ·χ∗
qλ
(χp(w), z).

□

(4) The function z 7→ logKΩ
p,λ(z, z) is plurisubharmonic on Ω, generalizing the well-

known property of the Bergman kernel.

Proof. Let ℓp denote the Banach space of p-th power summable functions on the set of
indices Sp(Ω, λ), so that

ℓp =
{
c : Sp(Ω, λ) → C : ∥c∥pℓp =

∑
|c(α)|p <∞

}
,

where the sum is over α ∈ Sp(Ω, λ). For z ∈ Ω, consider the map ν(z) : Sp(Ω, λ) → C
defined by

ν(z)(α) =
eα(z)

∥eα∥p,λ
, for α ∈ Sp(Ω, λ).
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We claim that ν(z) ∈ ℓp for each z ∈ Ω. Indeed, the definition of the MBK in (1.10) and
Theorem 3.6 together show for z ∈ Ω that∑

α

|eα(z)|p

∥eα∥pp,λ
= KΩ

p,λ(z, z) <∞. (3.17)

We therefore have a map ν : Ω → ℓp, which we claim is a Banach-valued holomorphic
function. Let φ : ℓp → C be a bounded linear functional, meaning there is a µ ∈ ℓq such

that for z ∈ Ω we have φ(ν(z)) =
∑

α
eα(z)µ(α)
∥eα∥pp,λ

. Summing over α ∈ Sp(Ω, λ), we have∣∣∣∣∣∑
α

eα(z)µ(α)

∥eα∥pp,λ

∣∣∣∣∣ ≤∑
α

|eα(z)| |µ(α)|
∥eα∥pp,λ

≤ ∥φ∥op ∥ν(z)∥ℓp ,

so by Lemma 3.7 the function z 7→ φ(ν(z)) is represented by convergent Laurent series and
is therefore holomorphic. Therefore ν is itself holomorphic as an ℓp-valued map (see, e.g.,
[Muj86, Theorem 8.12]). But if ν is a Banach-valued holomorphic function, the function
log ∥ν∥ is known to be plurisubharmonic (see, e.g., [Muj86, Corollary 34.10]). By the
definition of ν and (3.17), we see that

log ∥ν(z)∥ℓp = log

(∑
α

|eα(z)|p

∥eα∥pp,λ

) 1
p

=
1

p
logKΩ

p,λ(z, z),

and the result follows. □

(5) The MBK of a product Reinhardt domain can be obtained from the MBKs of its
factors in the same way as in the case of the Bergman kernel. Suppose that n = n′ + n′′,
and the domain Ω can be represented as a product Ω = Ω′ × Ω′′, where Ω′ and Ω′′ are
Reinhardt domains in Cn′

and Cn′′
, respectively. Suppose further that the weight λ has

a tensor product representation as λ(z) = λ′(z′)λ′′(z′′), where λ, λ′′ are admissible multi-
radial weight functions on Ω′ and Ω′′, respectively. Then λ is easily seen to be admissible,
and the MBK of Ap(Ω, λ) factors into the product of the MBKs of Ap(Ω′, λ′) and Ap(Ω′′, λ′′):

KΩ
p,λ(z, w) = KΩ′

p,λ′(z′, w′)KΩ′′
p,λ′′(z′′, w′′). (3.18)

Formula (3.18) follows from (1.10) by decomposing α = (α′, α′′), where α ∈ Zn, α′ ∈
Zn′

, α′′ ∈ Zn′′
, and z = (z′, z′′), where z ∈ Cn, z′ ∈ Cn′

, z′′ ∈ Cn′′
, and noticing that

eα(z) = eα′(z′)eα′′(z′′), (3.19a)

eα(χp(w)) = eα′(χp(w
′))eα′′(χp(w

′′)), (3.19b)

∥eα∥Lp(Ω,λ) = ∥eα′∥Lp(Ω′,λ′) ∥eα′′∥Lp(Ω′′,λ′′) . (3.19c)

4. Integral representation of the Monomial Basis Projection

In this section we prove that the MBP admits an integral representation by the MBK
via (4.2). Recall that the MBK of Ap(Ω, λ) is guaranteed to exist by Theorem 3.6 when
Ω is a pseudoconvex Reinhardt domain and λ is an admissible multi-radial weight. In
Proposition 4.10 it is shown that a necessary and sufficient condition for the existence of
the MBP is that the integral operator on the right hand side of (4.2) admits estimates in
Lp(Ω, λ). This representation gives a more tractable way of dealing with the MBP, which
was originally defined as the limit of partial sums in (2.19).
General Hypothesis for Section 4. We continue to follow the conventions and the
notation of Section 1.4. In particular, Ω ⊂ Cn is a pseudoconvex Reinhardt domain, λ an
admissible multi-radial weight on Ω, 1 < p, q <∞ with 1

p + 1
q = 1, etc.
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Theorem 4.1. If the Monomial Basis Projection PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, then

PΩ
p,λ(f)(z) =

∫
Ω
KΩ

p,λ(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ), (4.2)

and for each z ∈ Ω, we have KΩ
p,λ(z, ·) ∈ Lq(Ω, λ).

When p = 2, this is simply the representation of the Bergman projection BΩ
λ of A2(Ω, λ)

by its Bergman kernel. But unlike this special case, the existence of the MBP of Ap(Ω, λ)
for p ̸= 2 is not guaranteed by abstract Hilbert-space theory. We note a related consequence
of Theorem 4.1, which should be contrasted with Proposition 2.9:

Corollary 4.3. Suppose the Bergman projection BΩ
λ : L2(Ω, λ) → A2(Ω, λ) extends by

continuity to a bounded operator BΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ), p ̸= 2. The extension BΩ

p,λ is

not the basis projection determined by the monomial Schauder basis {eα : α ∈ Sp(Ω, λ)}.

Proof. This is immediate, since the operator BΩ
p,λ is still given by the formula

BΩ
p,λ(f)(z) =

∫
Ω
BΩ

λ (z, w)f(w)λ(w)dV (w),

where BΩ
λ is the weighted Bergman kernel. This kernel is distinct from the MBK given by

formula (1.10) except when p = 2. □

4.1. Hahn-Banach extensions and integral formulas. By Proposition 2.4, the dual of
Lp(Ω, λ) is strictly convex. Proposition 2.3 thus guarantees that each coefficient functional
in the set {aα : α ∈ Sp(Ω, λ)} dual to the monomial Schauder basis {eα : α ∈ Sp(Ω, λ)}
has a unique Hahn-Banach extension to a functional ãα : Lp(Ω, λ) → C. We begin by
identifying this extension:

Proposition 4.4. For α ∈ Sp(Ω, λ), let gα be the function defined on Ω by

gα =
χ∗
peα

∥eα∥pp,λ
=
eα |eα|p−2

∥eα∥pp,λ
. (4.5)

Then the unique Hahn-Banach extension ãα : Lp(Ω, λ) → C of the coefficient functional
aα : Ap(Ω, λ) → C is given by

ãα(f) =

∫
Ω
f · gα λdV, f ∈ Lp(Ω, λ). (4.6)

Proof. First we compute the norm of gα in Lq(Ω, λ):

∥gα∥qq,λ =
1

∥eα∥pqp,λ

∫
Ω
|eα|(p−1)q λ dV =

1

∥eα∥pqp,λ
∥eα∥pp,λ =

1

∥eα∥pq−p
p,λ

=
1

∥eα∥qp,λ
.

It follows that gα ∈ Lq(Ω, λ) and the linear functional in (4.6) satisfies ãα ∈ Lp(Ω, λ)′, and
its norm is given by

∥ãα∥Lp(Ω,λ)′ = ∥gα∥q,λ =
1

∥eα∥p,λ
. (4.7)

By (2.17), we have ∥aα∥Ap(Ω,λ)′ = ∥ãα∥Lp(Ω,λ)′ . To complete the proof it remains to show

that ãα is an extension of aα.
By Theorem 2.16, the linear span of {eβ : β ∈ Sp(Ω, λ)} is dense in Ap(Ω, λ). Therefore

we only need to show that for each β ∈ Sp(Ω, λ), we have ãα(eβ) = aα(eβ). Since λ is multi-
radial, there is a function ℓ on the Reinhardt shadow |Ω| such that λ(z) = ℓ(|z1| , . . . , |zn|).
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And since gα ∈ Lq(Ω, λ) and eβ ∈ Lp(Ω, λ), the product eβgα ∈ L1(Ω, λ) and Fubini’s
theorem therefore implies∫

Ω
eβgαλdV =

1

∥eα∥pp,λ

∫
|Ω|
rβ(rα)p−1

(∫
Tn

ei⟨β−α,θ⟩dθ

)
r1r2 . . . rnℓdr1 . . . drn, (4.8)

where dθ = dθ1 . . . dθn is the natural volume element of the unit torus Tn. First suppose
that β ̸= α, so that the integral over Tn on the right hand side of (4.8) vanishes. Then we

have

∫
Ω
eβgαλdV = 0 = aα(eβ). If β = α, (4.8) gives∫

Ω
eαgαλdV =

1

∥eα∥pp,λ

∫
|Ω|
rβ(rα)p−1

(∫
Tn

dθ

)
r1r2 . . . rnℓdr1 . . . drn

=
1

∥eα∥pp,λ
· (2π)n

∫
|Ω|

(rα)pr1r2 . . . rnℓdr1 . . . drn

=
1

∥eα∥pp,λ
· ∥eα∥pp,λ = 1 = aα(eα).

It follows that ãα is a norm preserving extension of aα. Since this extension is unique, the
result follows. □

Observe that by combining (3.4) and (4.5), the MBK of Ap(Ω, λ) can be written as

KΩ
p,λ(z, w) =

∑
α∈Sp(Ω,λ)

eα(z)gα(w). (4.9)

We now establish our necessary and sufficient condition for the existence of the MBP:

Proposition 4.10. Define an integral operator on Cc(Ω) by

Qf(z) =

∫
Ω
KΩ

p,λ(z, w)f(w)λ(w)dV (w), f ∈ Cc(Ω). (4.11)

The MBP of Ap(Ω, λ) exists if and only if Q satisfies Lp-estimates, i.e., there is a constant
C > 0 such that for each f ∈ Cc(Ω) we have the inequality

∥Qf∥p,λ ≤ C ∥f∥p,λ . (4.12)

Proof. Recall that Ω ⊂ Cn is a pseudoconvex Reinhardt domain and λ is an admissible
multi-radial weight. The function KΩ

p,λ is continuous on Ω × Ω by Theorem 3.6, so the

integral in (4.11) exists for each z ∈ Ω. Item (1) in Section 3.4 shows z 7→ KΩ
p,λ(z, w) is

holomorphic for each w ∈ Ω, implying Qf is holomorphic for f ∈ Cc(Ω), for instance, by
applying Morera’s theorem in each variable, or equivalently, by applying ∂̄ to both sides.

Let f ∈ Cc(Ω). Since the series for KΩ
p,λ converges absolutely and uniformly on the

compact subset {z} × supp(f) ⊂ Ω× Ω, (4.9) gives

Qf(z) =

∫
Ω

( ∑
α∈Sp(Ω,λ)

eα(z)gα(w)

)
f(w)λ(w) dV (w)

=
∑

α∈Sp(Ω,λ)

(∫
Ω
f(w)gα(w)λ(w) dV (w)

)
eα(z) =

∑
α∈Sp(Ω,λ)

ãα(f)eα(z). (4.13)

The series (4.13) converges unconditionally and is the Laurent series of the holomorphic
function Qf . It is therefore uniformly convergent for z in compact subsets of Ω.



PROJECTIONS ONTO BERGMAN SPACES 19

Suppose now that the MBP PΩ
p,λ : Lp(Ω, λ) → Ap(Ω, λ) exists, which by Definition 2.18

is a bounded, surjective, linear projection given by the following limit of partial sums,
convergent in Ap(Ω, λ):

PΩ
p,λf = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα, f ∈ Lp(Ω, λ). (4.14)

Since convergence in Ap(Ω, λ) implies uniform convergence on compact subsets, it follows
that for f ∈ Cc(Ω), Qf = PΩ

p,λf . Therefore Q satisfies Lp-estimates, i.e. (4.12) holds.

Conversely, suppose that (4.12) holds. Then Q can then be extended by continuity to an

operator Q̃ on Lp(Ω, λ) with the same norm. We claim that Q̃ is the MBP.
If f ∈ Lp(Ω, λ), we can find a sequence {fj} ⊂ Cc(Ω) such that fj → f in Lp(Ω, λ). Each

Qfj ∈ Ap(Ω, λ) and (by definition) Qfj → Q̃f in Lp(Ω, λ). But this implies Qfj → Q̃f

uniformly on compact subsets, so the limit Q̃f is holomorphic, and thus the range of Q̃ is

contained in Ap(Ω, λ). A direct computation now shows Q̃eα = eα for α ∈ Sp(Ω, λ), and it

follows that Q̃ is a surjective projection from Lp(Ω, λ) to Ap(Ω, λ).

If f ∈ Cc(Ω), then Qf = Q̃f ∈ Ap(Ω, λ) and by Theorem 2.16 the Laurent series

expansion of Q̃f given by (4.13) converges (as a sequence of square partial sums) in Ap(Ω, λ):

Q̃f = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(f)eα. (4.15)

For a general g ∈ Lp(Ω, λ), Q̃g ∈ Ap(Ω, λ) and so again by Theorem 2.16,

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

aα(Q̃g)eα. (4.16)

It follows that on Cc(Ω) we have the identity aα ◦ Q = ãα. This relation extends by

continuity to give aα ◦ Q̃ = ãα as functionals on Lp(Ω, λ). Then (4.16) becomes

Q̃g = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω,λ)

ãα(g)eα,

i.e., Q̃ is the MBP, as we wanted to show. □

Proof of Theorem 4.1. Since the MBP exists, by Proposition 4.10 the operator Q of (4.11)
satisfies Lp-estimates. Then, by the continuity of point-evaluation in Ap(Ω, λ), for each
z ∈ Ω the map g 7→ Qg(z) is a bounded linear functional on Lp(Ω, λ). Formula (4.11)
representing this functional now shows that KΩ

p,λ(z, ·) ∈ Lq(Ω, λ). Standard techniques of

real analysis (cutting off and mollification) gives us a sequence {fj} ⊂ Cc(Ω) such that
fj → f in Lp(Ω, λ). Therefore for each z ∈ Ω, the sequence {KΩ

p,λ(z, ·)fj(·)} ⊂ Cc(Ω)

converges in L1(Ω, λ) to the limit KΩ
p,λ(z, ·)f(·). Since integration against the weight λ is a

bounded linear functional on L1(Ω, λ), we obtain (4.2) in the limit. □

4.2. Subkernels and subprojections. It is possible to introduce a slightly more general
notion of Schauder basis and basis projection than was given in Definition 2.1. In Section 6,
for example, we need to allow for partial sums other than the square partial sums of (2.2),
which were used for simplicity of notation and exposition. We give the following definitions
in the context of the Bergman space Ap(Ω, λ), keeping in mind that the General Hypothesis
of Section 4 is still in force.
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Let B be a subset of Sp(Ω, λ), the set of p-allowable multi-indices. Let Ap
B(Ω, λ) denote

the closed subspace of Ap(Ω, λ) generated by the monomials {eα : α ∈ B}, i.e., Ap
B(Ω, λ) is

the closure in Ap(Ω, λ) of the span (finite linear combinations) of {eα : α ∈ B}. It is easy
to see that any function f ∈ Ap

B(Ω, λ) must have a Laurent series of the form

f =
∑
α∈B

aα(f)eα,

i.e., only monomials indexed byB occur in the sum. Suppose now we are given an increasing
family of subsets B1 ⊂ B2 ⊂ · · · ⊂ B such that

⋃∞
N=1BN = B. Let us call such a family

{BN}∞N=1 an exhaustion of B. We say that the set {eα : α ∈ B} together with the
exhaustion {BN}∞N=1 forms a Schauder basis in the wider sense if for each f ∈ Ap

B(Ω, λ),
we have the following limit of partial sums

lim
N→∞

∥∥∥∥∥∥
∑

α∈BN

ãα(f)eα − f

∥∥∥∥∥∥
Lp(Ω,λ)

= 0. (4.17)

When this limit holds for all f ∈ Ap
B(Ω, λ), call {BN}∞N=1 a Schauder exhaustion of B.

Independent of the choice of exhaustion, the set B gives rise to an integral kernel. Let

KB(z, w) =
∑
α∈B

eα(z) · χ∗
peα(w)

∥eα∥pp,λ
, (4.18)

be called the subkernel associated toB. Since the series (1.10) is locally normally convergent
by Theorem 3.6, it follows that the same is true for the subseries defining KB. It is not
difficult to see that versions of the first four properties of the MBK listed in Section 3.4
continue to hold for the kernel KB.

We say that a bounded projection operator PB from Lp(Ω, λ) to Ap
B(Ω, λ) is the basis

projection determined by B and Schauder exhaustion {BN}∞N=1 if for f ∈ Lp(Ω, λ),

PBf = lim
N→∞

∑
α∈BN

ãα(f)eα, (4.19)

where the limit is in the norm of Lp(Ω, λ), and as before ãα is the Hahn-Banach extension
of the coefficient functional aα : Ap

B(Ω, λ) → C to a linear functional on Lp(Ω, λ). We call
PB a subprojection. Notice that the exhaustion {BN}∞N=1 is used on the right hand side of
(4.19), but is suppressed in the notation PB (with good reason, see Corollary 4.22 below).

With these definitions we state an analog of Theorem 4.1 and Proposition 4.10:

Proposition 4.20. Let B ⊂ Sp(Ω, λ) and suppose {eα : α ∈ B} and its exhaustion
{BN}∞N=1 form a monomial Schauder basis in the wider sense, as described above. If the
subprojection PB : Lp(Ω, λ) → Ap

B(Ω, λ) exists, then for each z ∈ Ω we have KB(z, ·) ∈
Lq(Ω, λ) and

PB(f)(z) =

∫
Ω
KB(z, w)f(w)λ(w)dV (w), f ∈ Lp(Ω, λ). (4.21)

Further, the subprojection PB exists if and only if the operator QB given by

QBg(z) =

∫
Ω
KB(z, w)g(w)λ(w)dV (w), g ∈ Cc(Ω),

admits estimates in the Lp(Ω, λ)-norm.

Proof. First notice that when B = Sp(Ω, λ) and {BN}∞N=1 is the Schauder exhaustion of
Sp(Ω, λ) by square partial sums, this result is simply Theorem 4.1 and Proposition 4.10
combined. The general case is proved in exactly the same way, on noting that:
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(1) Independently of the choice of exhaustion {BN}∞N=1, the coefficient functionals dual
to the monomial Schauder basis {eα : α ∈ B} are the Laurent coefficient functionals
{aα : α ∈ B}. It is not difficult to see that these functionals are characterized by the

condition aα(eβ) = δβα, where δ
β
α is the Kronecker Delta, i.e. δαα = 1 for all α and δβα = 0

if α ̸= β. The exhaustion {BN}∞N=1 used to define the sequence of partial sums is only
important in that it must correspond to a Schauder basis of monomials for Ap

B(Ω, λ).
(2) The series (4.18) is absolutely convergent, and therefore can be rearranged in any

fashion we want. In particular, the analog of (4.15) for QBf holds with partial sums
determined by the exhaustion {BN}∞N=1.

(3) The only way in which the exhaustion by square partial sums in (4.14) was used in
the proof of Proposition 4.10 was through the fact that square partial sums of Laurent series
of a function in Ap(Ω, λ) converge in the Lp(Ω, λ) norm, i.e., they form a Schauder basis of
Ap(Ω, λ) in the sense of Definition 2.1.

It follows that all the arguments in the proofs of Proposition 4.10 and Theorem 4.1 go over
mutatis mutandis to this new situation. □

Proposition 4.20 has an immediate consequence:

Corollary 4.22. Let B ⊂ Sp(Ω, λ). If the subprojection PB : Lp(Ω, λ) → Ap
B(Ω, λ) exists

with respect to some Schauder exhaustion {BN}∞N=1 of B, it exists for every Schauder
exhaustion of B and is independent of that choice.

In other words, suppose {BN}∞N=1 and {CN}∞N=1 are two Schauder exhaustions of B.
Then for each f ∈ Ap

B(Ω, λ),

lim
N→∞

∑
α∈BN

aα(f)eα = f = lim
N→∞

∑
α∈CN

aα(f)eα,

with convergence in Lp(Ω, λ). If the subprojection PB corresponding to one of these ex-
haustions exists, they both exist and for f ∈ Lp(Ω, λ),

lim
N→∞

∑
α∈BN

ãα(f)eα = PBf = lim
N→∞

∑
α∈CN

ãα(f)eα,

since both are represented by the integral formula on the right hand side of (4.21). In
particular, these considerations apply to the full MBP of Ap(Ω, λ), and therefore, the MBP
can be defined with respect to any ordering of the monomials in which they form a Schauder
basis of Ap(Ω, λ) in the wider sense.

4.3. Absolute integral kernel operators. Let (X,F , µ) be a measure space, 1 < p <∞,
and suppose we are given an operator T formally defined on Lp(µ) by an integral kernel A:

T f(z) =

∫
X
A(z, w)f(w)dµ(w).

We make no assumption about the existence of the integral, so T is in general defined on a
linear subspace of Lp(µ) (which may degenerate to the zero subspace).

Definition 4.23. The absolute operator corresponding to T is the formally defined operator
on Lp(µ) corresponding to the absolute value of the kernel |A(z, w)|, denoted by

T+f(z) =

∫
X
|A(z, w)| f(w)dµ(w). (4.24)

The operator T is said to be absolutely bounded on Lp(µ), if T+ is everywhere defined on
Lp(µ) and defines a bounded linear operator from Lp(µ) to itself.
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Notice that if a formally defined integral operator T is absolutely bounded on Lp(µ), it
is clearly bounded, though the converse statement is not true.

4.4. Adjoints and Duality. Recall the twisted pairing from Section 1.5:

{f, g}p,λ =

∫
Ω
f · χ∗

p(g)λ dV, (4.25)

with notation as in (1.8) and (1.9). Recalling from (3.1) that ηq = detDχq, we have:

Proposition 4.26. The pairing given by (4.25)

(f, g) 7→ {f, g}p,λ, f ∈ Lp(Ω, λ), g ∈ Lq(Ω(p−1), ηq · χ∗
qλ)

is a sesquilinear duality paring of Banach spaces.

Proof. Recall that the pairing of f ∈ Lp(Ω, λ) with h ∈ Lq(Ω, λ) given by (f, h) 7→
∫
Ω fhλdV

is a sesquilinear duality pairing. Also recall from (3.2) and (3.3) that χq : Ω(p−1) → Ω is a

diffeomorphism outside a set of measure zero, with inverse χp : Ω → Ω(p−1), which is itself
a diffeomorphism outside a set of measure zero. It therefore suffices to show that

χ∗
q : L

q(Ω, λ) → Lq(Ω(p−1), ηq · χ∗
qλ) (4.27)

is an (isometric) isomorphism of Banach spaces. Calculation shows

∥h∥qLq(Ω,λ) =

∫
Ω
|h|q λdV =

∫
Ω(p−1)

|h ◦ χq(w)|q ηq(w)λ(χq(w))dV (w)

=
∥∥χ∗

q(h)
∥∥q
Lq(Ω(p−1),ηq ·χ∗

qλ)
. (4.28)

Since the inverse map χ∗
p of χ∗

q exists, it is surjective and the result follows by the closed-
graph theorem. □

Following the general definition (4.24), define the Absolute Monomial Basis Operator
(abbreviated AMBO), the integral operator obtained by integrating against the absolute
value of the MBK:

(PΩ
p,λ)

+f(z) =

∫
Ω

∣∣KΩ
p,λ(z, w)

∣∣ f(w)λ(w)dV (w), f ∈ Cc(Ω). (4.29)

We say the MBP PΩ
p,λ is absolutely bounded if the AMBO (PΩ

p,λ)
+ is bounded in Lp(Ω, λ).

For the remainder of the section our main focus is on the case of λ ≡ 1, where the pairing
(4.25) assumes the form

{f, g}p,1 =
∫
Ω
f · χ∗

p(g) dV, f ∈ Lp(Ω), g ∈ Lq(Ω(p−1), ηq). (4.30)

Proposition 4.31. If the MBP PΩ
p,1 : L

p(Ω) → Ap(Ω) is absolutely bounded in Lp(Ω), then

under the pairing (4.25) with λ ≡ 1, the adjoint of PΩ
p,1 is the weighted MBP

PΩ(p−1)

q,ηq : Lq(Ω(p−1), ηq) → Aq(Ω(p−1), ηq).

Proof. We have for f ∈ Lp(Ω) and g ∈ Lq(Ω(p−1), ηq):{
PΩ
p,1f, g

}
p,1

=

∫
Ω
PΩ
p,1f · χ∗

pg dV =

∫
Ω

(∫
Ω
KΩ

p,1(z, w)f(w) dV (w)

)
g(χp(z)) dV (z) (4.32)

=

∫
Ω

(∫
Ω
KΩ

p,1(z, w)g(χp(z))dV (z)

)
f(w) dV (w), (4.33)
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where the change in order of integration can be justified as follows. By the assumption that
PΩ
p,1 is absolutely bounded on Lp(Ω), we see that the function on Ω given by

z 7−→
∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (w)

is in Lp(Ω). Since g ∈ Lq(Ω(p−1), ηq), using Tonelli’s theorem we see that∫
Ω×Ω

∣∣KΩ
p,1(z, w)g(χp(z))f(w)

∣∣ dV (z, w)

=

∫
Ω

(∫
Ω

∣∣KΩ
p,1(z, w)

∣∣ · |f(w)| dV (z)

)
|g(χp(z))| dV (w) <∞,

by Proposition 4.26. Now Fubini’s theorem gives that (4.32) = (4.33).

Now make a change of variables z = χq(ζ) where ζ ∈ Ω(p−1) to obtain that

(4.33) =

∫
Ω

(∫
Ω(p−1)

KΩ
p,1(χq(ζ), w)g(ζ) ηq(ζ) dV (ζ)

)
f(w)dV (w)

=

∫
Ω

(∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(w), ζ) · g(ζ) ηq(ζ)dV (ζ)

)
f(w)dV (w)

=

∫
Ω

(∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(w), ζ) · g(ζ) ηq(ζ)dV (ζ)

)
f(w)dV (w) (4.34)

=

∫
Ω
f(w)PΩ(p−1)

q,ηq g(χp(w)) dV (w) (4.35)

=

∫
Ω
f · χ∗

p

(
PΩ(p−1)

q,ηq g
)
dV =

{
f,PΩ(p−1)

q,ηq g
}
p,1
.

Note that the second line follows from (3.16). The fact that (4.35) = (4.34) can be justified

as follows. For a g ∈ Lq(Ω(p−1), ηq), the quantity in (4.34) is finite for each f ∈ Lp(Ω), since
by the above computations it is equal to the finite quantity

{
PΩ
p,1f, g

}
p,1

. Therefore we see

that for each g ∈ Lq(Ω(p−1), ηq), we have(
w 7−→

∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(w), ζ)g(ζ)ηq(ζ)dV (ζ)

)
∈ Lq(Ω),

so that the linear map

g 7−→
∫
Ω(p−1)

KΩ(p−1)

q,ηq (χp(·), ζ)g(ζ)ηq(ζ)dV (ζ)

is bounded from Lq(Ω(p−1), ηq) to Lq(Ω) by the closed graph theorem (since the integral
operator is easily seen to be closed). Composing with the (isometric) bounded linear map

χ∗
q : L

q(Ω) → Lq(Ω(p−1), ηq) we see that the operator on Lq(Ω(p−1), ηq) given by

g 7−→
∫
Ω(p−1)

g(ζ)KΩ(p−1)

q,ηq (·, ζ)ηq(ζ)dV (ζ)

is bounded on Lq(Ω(p−1), ηq). Now Proposition 4.10 shows (4.35) = (4.34). □

Proposition 4.36. If the Monomial Basis Projection PΩ
p,1 : Lp(Ω) → Ap(Ω) is absolutely

bounded in Lp(Ω), the pairing {·, ·}p,1 of (4.30) restricts to a duality pairing

Ap(Ω)×Aq(Ω(p−1), ηq) → C.
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Proof. We show that the conjugate-linear continuous map Aq(Ω(p−1), ηq) → Ap(Ω)′ given
by h 7→ {·, h}p,1 is a homeomorphism of Banach spaces. To see surjectivity, let ϕ ∈ Ap(Ω)′,

let ϕ̃ : Lp(Ω) → C be its Hahn-Banach extension, and let g ∈ Lq(Ω(p−1), ηq) be such that

ϕ̃(f) = {f, g}p,1. The existence of g follows from Proposition 4.26, and we see that for each
f ∈ Ap(Ω) we have

ϕ(f) = ϕ̃(f) = {f, g}p,1 = {PΩ
p,1f, g}p,1 = {f,PΩ(p−1)

q,ηq g}p,1,

so the surjectivity follows since PΩ(p−1)

q,ηq g ∈ Aq(Ω(p−1), ηq). Now if h ∈ Aq(Ω(p−1), ηq) is in

the null-space of this map, i.e., for each f ∈ Ap(Ω) we have {f, h}p,1 = 0, then for g ∈ Lp(Ω):

{g, h}p,1 = {g,PΩ(p−1)

q,ηq h}p,1 = {PΩ
p,1g, h}p,1 = 0.

This shows that h = 0, so the mapping is injective. □

Remark 4.37. More generally, a slight adaptation of Proposition 4.31 can show the following:
let Ω ⊂ Cn be a pseudoconvex Reinhardt domain and λ > 0 be a continuous multi-radial
weight. If the MBP PΩ

p,λ : Lp(Ω, λ) → Ap(Ω, λ) is absolutely bounded in Lp(Ω, λ), then

under the pairing (4.25), the adjoint of PΩ
p,λ is the weighted MBP

PΩ(p−1)

q,ηq ·χ∗
qλ

: Lq(Ω(p−1), ηq · χ∗
qλ) → Aq(Ω(p−1), ηq · χ∗

qλ).

This allows for the formulation of a duality statement generalizing Proposition 4.36. ♢

5. (Sub)-projections on the disc and punctured disc

We compute here explicitly for 1 < p < ∞ certain subkernels of the Monomial Basis
Kernels associated to Ap(D, µγ) and Ap(D∗, µγ), where µγ(z) = |z|γ , and using this show
that the associated subprojections (including the full Monomial Basis Projections) of these
spaces both exist and are absolutely bounded. The subkernels and subprojections considered
have application to monomial polyhedra in Section 8. It is easily checked by Proposition 3.14
that µγ is an admissible weight on both D and D∗.

5.1. Arithmetic progression subkernels on D and D∗. Let a, b ∈ Z with b positive,
U = D or D∗, 1 < p <∞ and µγ(z) = |z|γ , γ ∈ R. Consider the set of integers

A(U, p, γ, a, b) = {α ∈ Z : α ≡ a mod b} ∩ Sp(U, µγ), (5.1)

where, as usual Sp(U, µγ) ⊂ Z is the set of α such that eα ∈ Ap(U, µγ). Notice that a is
determined only modulo b, so we can always assume that 0 ≤ a ≤ b − 1. We now identify
this set of integers with an arithmetic progression:

Proposition 5.2. Let U, p, γ, a, b be as above. There is an integer θ such that

A(U, p, γ, a, b) = {θ + νb : ν ≥ 0, ν ∈ Z}. (5.3)

Proof. Let U = D∗. We claim that α ∈ Sp(D∗, µγ) if and only if pα+ γ + 2 > 0. Indeed,

∥eα∥pp,µγ
=

∫
D∗

|z|pα+γ dV = 2π

∫ 1

0
rpα+γ+1 dr =

2π

pα+ γ + 2
, (5.4)

as long as pα+ γ+2 > 0; otherwise the integral diverges. Now let θ be the smallest integer
such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Clearly (5.3) holds.

The case U = D is nearly identical, but the condition that eα belongs to Lp(D, µγ) now
means that α must be nonnegative. If θ is the smallest integer in the set Sp(D, µγ), it is
determined now by the following three conditions: (i) θ ≡ a mod b, (ii) pθ+γ+2 > 0, and
(iii) θ ≥ 0. □
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Remark 5.5. For U, p, γ, a, b as above (with 0 ≤ a ≤ b− 1), we can determine θ explicitly:

θ =

{
a+ bℓ, U = D∗

max{a+ bℓ, a}, U = D,
where ℓ =

⌊
−γ + 2

pb
− a

b
+ 1

⌋
.

♢

Now define for z, w ∈ U the kernel

kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

eα(z) · χ∗
peα(w)

∥eα∥pp,µγ

=
∑

α∈A(U,p,γ,a,b)

tα

∥eα∥pp,µγ

, (5.6)

where χ∗
p is defined by (1.9) and t = zw |w|p−2. It is easily checked that in the terminology

of (4.18), kUp,γ,a,b is the subkernel of the Monomial Basis Kernel of Ap(U, µγ) corresponding

to the subset of indices B = A(U, p, γ, a, b). We will refer to the kernels kUp,γ,a,b as the
arithmetric progression subkernels.

Proposition 5.7. For z, w ∈ U and notation as specified above, we have

kUp,γ,a,b(z, w) =
tθ

2π
· (pθ + γ + 2)− (γ + 2 + p(θ − b))tb

(1− tb)2
. (5.8)

Proof. The calculation in (5.4) shows that if α ∈ Sp(U, µγ), then

∥eα∥pp,µγ
=

2π

pα+ γ + 2
.

Now combining (5.6) with Proposition 5.2, we see that

kUp,γ,a,b(z, w) =
∑

α∈A(U,p,γ,a,b)

tα

∥eα∥pp,µγ

=
tθ

2π

∞∑
ν=0

(p(θ + bν) + γ + 2)tbν

=
tθ

2π

(
p

∞∑
ν=0

(bν + 1)tbν + (pθ + γ + 2− p)

∞∑
ν=0

tbν

)
.

Writing these sums in closed form gives

kUp,γ,a,b(z, w) =
tθ

2π

(
p+ p(b− 1)tb

(1− tb)2
+

(pθ + γ + 2− p)

1− tb

)
=

tθ

2π
· (pθ + γ + 2)− (γ + 2 + p(θ − b))tb

(1− tb)2
.

□

Corollary 5.9. The arithmetic progression kernel kUp,γ,a,b admits the bound∣∣kUp,γ,a,b(z, w)∣∣ ≤ C
(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
,

where C > 0 is independent of z, w ∈ U .

Proof. This follows from (5.8), on noting that (pθ + γ + 2) is necessarily positive. □

Setting a = 0, b = 1 in Proposition 5.7 yields the full MBKs of Ap(D∗, µγ) and A
p(D, µγ):

Corollary 5.10. Let γ ∈ R, µγ(z) = |z|γ and t = zw |w|p−2. The Monomial Basis Kernels
of Ap(D∗, µγ) and A

p(D, µγ) are given by

(1) KD∗
p,µγ

(z, w) =
1

2π
· (pℓ+ γ + 2)tℓ − (γ + 2 + p(ℓ− 1))tℓ+1

(1− t)2
, where ℓ =

⌊
−γ+2

p + 1
⌋
.
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(2) KD
p,µγ

(z, w) =
1

2π
· (pL+ γ + 2)tL − (γ + 2 + p(L− 1))tL+1

(1− t)2
, where L = max{ℓ, 0}.

5.2. Two tools. We now recall two important results.

Proposition 5.11 (Schur’s test). For 1 ≤ j ≤ N , let Dj be a domain in Rnj , let Kj :
Dj ×Dj → [0,∞) be a kernel on Dj, and let λj be an a.e. positive weight on Dj. Suppose
that for each j, there exist a.e. positive measurable functions ϕj , ψj on Dj and constants

Cj
1 , C

j
2 > 0 such that the following two estimates hold:

(1) For z ∈ Dj,

∫
Dj

Kj(z, w)ψj(w)
qλj(w) dV (w) ≤ Cj

1ϕj(z)
q.

(2) For w ∈ Dj,

∫
Dj

ϕj(z)
pKj(z, w)λ

j(z) dV (z) ≤ Cj
2ψj(w)

p.

Let D = D1×· · ·×DN be the product of the domains, let K(z, w) =
∏N

j=1Kj(zj , wj), where

zj , wj ∈ Dj, z = (z1, . . . , zN ) ∈ D, w = (w1, . . . , wN ) ∈ D, and let λ(w) =
∏N

j=1 λ
j(wj).

Then the operators T and T † defined by

T f(z) =

∫
D
K(z, w)f(w)λ(w)dV (w), T †g(z) =

∫
D
g(z)K(z, w)λ(z)dV (z),

are bounded on Lp(D,λ) and Lq(D,λ), respectively.

Proof. When N = 1, this is a form of the famous Schur’s test for boundedness of integral
operators on Lp-spaces defined by positive kernels (see [Zhu07, Theorem 3.6]). The case

N ≥ 2 is reduced to the case N = 1, if we let ϕ(z) =
∏N

j=1 ϕj(zj) and ψ(z) =
∏N

j=1 ψj(zj)

(zj ∈ Dj and z = (z1, . . . , zN ) ∈ D) and using the Tonelli-Fubini theorem to represent
integrals over D as repeated integrals over the product representations. □

Proposition 5.12 (Lemma 3.4 of [EM16]; also see [FR74] for β = 0). Let U = D or D∗,
0 < ϵ < 1 and β > −2. There exists C > 0 such that∫

U

(1− |w|2)−ϵ

|1− zw|2
|w|β dV (w) ≤ C(1− |z|2)−ϵ. (5.13)

5.3. Lp-boundedness of operators. We now prove that arithmetic progression kernels
represent operators bounded in the norm of Lp(Ω, µγ). This proves the existence of the
subprojections determined by the sets A(U, p, γ, a, b), and in particular, the existence of the
full MBPs of Ap(D∗, µγ) and A

p(D, µγ).
For U = D or D∗, µγ(z) = |z|γ with γ ∈ R and 1 < p <∞, define the integral operator

pU
p,γ,a,b(f)(z) =

∫
U
kUp,γ,a,b(z, w)f(w)µγ(w)dV (w), (5.14)

where kUp,γ,a,b(z, w) is the kernel defined in (5.6). When this operator is bounded in the norm

of Lp(U, µγ), Proposition 4.20 says that it is the subprojection PB : Lp(U, µγ) → Ap
B(U, µγ),

with B = A(U, p, γ, a, b).
Following (4.24), we let (pU

p,γ,a,b)
+ denote the “absolute operator”

(pU
p,γ,a,b)

+(f)(z) =

∫
U

∣∣kUp,γ,a,b(z, w)∣∣ f(w)µγ(w)dV (w). (5.15)

Proposition 5.16. Define the following auxiliary functions on U :

ϕ(z) = |z|
θ
q (1− |z|2b)−

1
pq , ψ(w) = |w|

θ
q (1− |w|2b(p−1))

− 1
pq .

There exist constants C1, C2 > 0, such that the following estimates hold:
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(1) For z ∈ U ,

∫
U

∣∣kUp,γ,a,b(z, w)∣∣ψ(w)qµγ(w) dV (w) ≤ C1ϕ(z)
q.

(2) For w ∈ U ,

∫
U
ϕ(z)p

∣∣kUp,γ,a,b(z, w)∣∣µγ(z) dV (z) ≤ C2ψ(w)
p.

Proof. Throughout this proof, C will denote a positive number depending on p, γ, a, b but
independent of z, w ∈ U . Its value will change from step to step.

From the kernel bound in Corollary 5.9, we obtain∫
U

∣∣kUp,γ,a,b(z, w)∣∣ψ(w)qµγ(w) dV (w) ≤ C

∫
U

(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
ψ(w)qµγ(w) dV (w)

= C|z|θ
∫
U

(
1− |w|2b(p−1)

)− 1
p

|1− zbwb|w|(p−2)b|2
|w|pθ+γ dV (w). (5.17)

Set ζ = wb|w|(p−2)b, so |ζ| = |w|(p−1)b, |w| = |ζ|
q−1
b and dV (w) =

(
q−1
b2

)
|ζ|

2(q−1)
b

−2dV (ζ).

This change of variable now shows

(5.17) ≤ C|z|θ
∫
U

(1− |ζ|2)−
1
p

|1− zbζ|2
|ζ|

qθ
b
+

(γ+2)(q−1)
b

−2 dV (ζ). (5.18)

This integral converges if and only if qθ + (γ + 2)(q − 1) > 0. Multiplying by the positive
number p

q , we see this condition is equivalent to requiring that pθ + γ + 2 > 0, which is

guaranteed to hold. Indeed, in the proof of Proposition 5.2, θ was shown to be the smallest
integer such that (i) θ ≡ a mod b, and (ii) pθ + γ + 2 > 0. Now apply Proposition 5.12:

(5.18) ≤ C|z|θ(1− |z|2b)−
1
p = C

(
|z|

θ
q (1− |z|2b)−

1
pq

)q
= Cϕ(z)q,

giving us estimate (1) upon setting this constant to be C1. Now consider∫
U

∣∣kUp,γ,a,b(z, w)∣∣ϕ(z)pµγ(z) dV (z) ≤ C

∫
U

(|z||w|p−1)θ

|1− zbwb|w|(p−2)b|2
ϕ(z)pµγ(z) dV (z)

= C|w|(p−1)θ

∫
U

(1− |z|2b)−
1
q

|1− wb|w|(p−2)bzb|2
|z|(1+

p
q
)θ+γ

dV (z). (5.19)

Set ξ = zb, which says that |z| = |ξ|
1
b and dV (z) = b−2|ξ|

2
b
−2dV (ξ). This shows that

(5.19) ≤ C|w|(p−1)θ

∫
U

(1− |ξ|2)−
1
q

|1− wb|w|(p−2)bξ|2
|ξ|

pθ
b
+ γ+2

b
−2 dV (ξ), (5.20)

This integral converges since pθ + γ + 2 > 0 (this is the same condition as before). Now
apply Proposition 5.12 again to see

(5.20) ≤ C|w|(p−1)θ
(
1− |w|2b(p−1)

)− 1
q = C

(
|w|

θ
q (1− |w|2b(p−1))

− 1
pq

)p
= Cψ(z)p,

giving estimate (2) upon setting this constant to be C2. □

Proposition 5.16 yields several immediate consequences.

Corollary 5.21. The absolute operator (pU
p,γ,a,b)

+ is bounded on Lp(U, µγ), and conse-

quently the subprojection pU
p,γ,a,b : L

p(U, µγ) → Ap
B(U, µγ) exists, where B = A(U, p, γ, a, b).

Proof. From definition (5.15), the estimates in Proposition 5.16 allow for immediate ap-
plication of Proposition 5.11 (Schur’s test) with N = 1, proving the boundedness of the
absolute operator. Since the existence of Lp(U, µγ) estimates on (pU

p,γ,a,b)
+ immediately

implies them for the integral operator (5.14), Proposition 4.20 finishes the proof. □
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Corollary 5.22. The Monomial Basis Projections of the spaces Ap(D, µγ) and Ap(D∗, µγ)
exist and are absolutely bounded.

Proof. This follows from Corollary 5.21 on noting that the MBP of Ap(U, µγ), U = D or
D∗, coincides with the operator pU

p,γ,0,1. □

Corollary 5.23. Let U = D∗ or D. The dual space of Ap(U) admits the identification

Ap(U)′ ≃ Aq(U, ηq), ηq(ζ) = (q − 1)|ζ|2q−4,

via the pairing (4.30), sending (f, g) 7→ {f, g}p,1, where f ∈ Ap(U), g ∈ Aq(U, ηq).

Proof. Recalling the definition of a Reinhart power in (3.9), it it clear that in our case

U (m) = U for every m > 0. Proposition 4.36 now gives the result. □

Remark 5.24. The duality pairing in Corollary 5.23 should be contrasted with the usual
Hölder duality pairing of Lp and Lq. On the disc D, the Hölder pairing restricts to a duality
pairing of the holomorphic subspaces, yielding the identification Ap(D)′ ≃ Aq(D). On the
punctured disc D∗, the Hölder pairing fails to restrict to a holomorphic duality pairing and
any attempt to identify Ap(D∗)′ with Aq(D∗) fails. This is discussed further in Section 9.3.
♢

6. Transformation laws under monomial maps

6.1. The canonical-bundle pullback. If ϕ : Ω1 → Ω2 is a finite-sheeted holomorphic
map of domains in Cn, and f is a function on Ω2, we can define a function on Ω1 by setting

ϕ♯(f) = f ◦ ϕ · detϕ′, (6.1)

where ϕ′(z) : Cn → Cn is the complex derivative of the map ϕ at z ∈ Ω1. If we think of
Ω1,Ω2 as subsets of R2n and ϕ as a smooth mapping, we can also consider the 2n × 2n
real Jacobian Dϕ of ϕ. Using the well-known relation detDϕ = |detϕ′|2 between the two
types of Jacobians, we see that ϕ♯ defines a continuous linear mapping of Hilbert spaces
ϕ♯ : L2(Ω2) → L2(Ω1), and restricts to a map A2(Ω2) → A2(Ω1). We will refer to ϕ♯

as the canonical-bundle pullback induced by ϕ, or informally as the ♯-pullback, in order
to distinguish it from another notion of pullback to be introduced in Section 7. If ϕ is a
biholomorphism, then ϕ♯ is an isometric isomorphism of Hilbert spaces L2(Ω2) ∼= L2(Ω1)
that restricts to an isometric isomorphism A2(Ω2) ∼= A2(Ω1). This biholomorphic invariance
of Bergman spaces can be understood intrinsically by interpreting the Bergman space as a
space of top-degree holomorphic forms (see [Kob59] or [Kra13, pp. 178 ff.]), and the map
ϕ♯ as the pullback map of forms induced by the holomorphic map ϕ.

6.2. Proper maps of quotient type. In the classical theory of holomorphic mappings,
one considers proper holomorphic mappings, and extends the biholomorphic invariance of
Bergman spaces to such mappings via Bell’s transformation formula (see [Bel81, Bel82,
DF82, BC82]). In our applications, we will be concerned with a specific class of proper
holomorphic mappings. We begin with the following definition (see [BCEM22]):

Definition 6.2. Let Ω1,Ω2 ⊂ Cn be domains, let Φ : Ω1 → Ω2 be a proper holomorphic
mapping and Γ ⊂ Aut(Ω1) a finite group of biholomorphic automorphisms of Ω1. We say
Φ is of quotient type with respect to Γ if

(1) there exist closed lower-dimensional complex-analytic subvarieties Zj ⊂ Ωj , j = 1, 2,
such that Φ restricts to a covering map Φ : Ω1 \ Z1 → Ω2 \ Z2, and

(2) for each z ∈ Ω2 \ Z2, the action of Γ on Ω1 restricts to a transitive action on the
fiber Φ−1(z).

The group Γ is called the group of deck transformations of Φ.
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There are several other names current in the literature for this notion, for example,
the name “ramified covering” is used in the paper [DM23]. We will continue to use the
terminology and notation of [BCEM22].

It is straightforward to see that the restricted map Φ : Ω1 \ Z1 → Ω2 \ Z2 is a so called
regular covering map (see [Mas91, page 135 ff.]); i.e., the covering map gives rise to a
biholomorphism between Ω2 \Z2 and the quotient (Ω1 \Z1)/Γ, where it can be shown that
Γ acts properly and discontinuously on Ω1 \Z1. Further, it follows that Γ is in fact the full
group of deck transformations of the covering map Φ : Ω1 \ Z1 → Ω2 \ Z2, and that this
covering map has exactly |Γ| sheets, where |Γ| is the size of the group Γ. Notice that by
analytic continuation, the relation Φ ◦ σ = Φ holds for each σ in Γ on all of Ω1.

Definition 6.3. Given a domain Ω ⊂ Cn, a group Γ ⊂ Aut(Ω) and a space F of functions
on Ω, we define

[F]Γ = {f ∈ F : f = σ♯(f) for all σ ∈ Γ}, (6.4)

where σ♯ is the canonical-bundle pullback induced by σ as in (6.1). We say that functions
in this space are Γ-invariant in the ♯ sense.

Fix 1 < p < ∞ and consider a proper holomorphic mapping Φ : Ω1 → Ω2 of quotient
type with respect to group Γ. Define the function

λp = |detΦ′|2−p. (6.5)

This function arises as a weight in naturally occuring Lp-spaces. Indeed, in Proposition 4.5
of [BCEM22] it was shown that the map

Φ♯ : Lp(Ω2) → [Lp(Ω1, λp)]
Γ (6.6)

is a homothetic isomorphism in the sense of (2.12) with∥∥∥Φ♯(f)
∥∥∥p
Lp(Ω1,λp)

= |Γ| · ∥f∥pLp(Ω2)
, (6.7)

which restricts to a homothetic isomorphism of the holomorphic subspaces

Φ♯ : Ap(Ω2) → [Ap(Ω1, λp)]
Γ. (6.8)

6.3. Monomial maps. Consider an n×n integer matrix A whose element in the j-th row

and k-th column of A is ajk. Let aj denote the j-th row of A, and ak the k-th column.
Letting the rows of A correspond to monomials eaj , define for z ∈ Cn the matrix power

zA =

ea1(z)...
ean(z)

 =

z
a1

...
za

n

 =

z
a11
1 z

a12
2 · · · za

1
n

n
...

z
an1
1 z

an2
2 · · · za

n
n

n

 , (6.9)

provided each component is defined. Define the monomial map ΦA to be the rational map
on Cn given by

ΦA(z) = zA. (6.10)

The following properties of monomial maps are known in the literature and references to
their proofs are given at the end of the list. Three pieces of notation must first be explained:
The element-wise exponential map exp : Cn → (C∗)n is given by exp(z) = (ez1 , . . . , ezn); if
z = (z1, . . . , zn), w = (w1, . . . , wn) are points in Cn, define their component-wise product
to be z⊙w = (z1w1, z2w2, . . . , znwn); 1 ∈ Z1×n is a row vector with 1 in each component.

(1) The following formula generalizes the familiar power-rule:

detΦ′
A = detA · e1A−1. (6.11a)
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(2) If A is an invertible n × n matrix of nonnegative integers, then ΦA : Cn → Cn is a
proper holomorphic map of quotient type with respect to the group

ΓA = {σν : σν(z) = exp
(
2πiA−1ν

)
⊙ z, ν ∈ Zn×1}. (6.11b)

(3) The group ΓA has exactly | detA| elements.
(4) The canonical-bundle pullback of the monomial eα via the element σν ∈ ΓA is

σ♯ν(eα) = e2πi(α+1)A
−1ν · eα. (6.11c)

(5) The set of monomials that are ΓA-invariant in the ♯ sense as defined by (6.4) is

{eα : α = βA− 1, β ∈ Z1×n}. (6.11d)

Proof. Property (1) is proved in both [NP09, Lemma 4.2] and [BCEM22, Lemma 3.8].
Properties (2) and (3) can be found in [BCEM22, Theorem 3.12]. See also [Zwo00, NP21]
for related results. Properties (4) and (5) are found in [BCEM22, Proposition 6.12]. □

6.4. A hypothesis and some immediate consequences. Throughout much of Sec-
tions 6 and 7, we will assume this general hypothesis in the statements of our results:

Hypothesis ⋆: The domain Ω2 ⊂ Cn is pseudoconvex and Reinhardt, A is an n × n
matrix of nonnegative integers such that detA ̸= 0, and Ω1 = Φ−1

A (Ω2), the inverse image
of Ω2 under the monomial map ΦA : Cn → Cn defined in (6.10).

This hypothesis has several elementary consequences. In statements using⋆, we will assume
the knowledge of the following:

(1) We obtain by restriction a proper holomorphic map

ΦA : Ω1 → Ω2,

which is of quotient type with respect to the group ΓA defined in (6.11b). We will
also often omit explicit reference to the matrix A and simply write, e.g., ΦA = Φ,
ΓA = Γ, etc.

(2) The domain Ω1 is pseudoconvex and Reinhardt.
(3) The weight λp from (6.5) is given by

λp(ζ) = |detΦ′
A(ζ)|2−p = |detA|2−p

n∏
k=1

|ζk|(1·ak−1)(2−p), (6.12)

where as before 1 ∈ Z1×n has 1 in each component and ak is the k-th column of A.
(4) By Proposition 3.14, the weight λp is admissible in the sense of Section 1.4.
(5) By (6.6) the canonical-bundle pullback gives a homothetic isomorphism

Φ♯
A : Lp(Ω2) → [Lp(Ω1, λp)]

ΓA ,

which by (6.8) restricts to a homothetic isomorphism of the holomorphic subspaces

Φ♯
A : Ap(Ω2) → [Ap(Ω1, λp)]

ΓA .

6.5. Group invariant kernels and projections. Throughout this section we assume
Hypothesis ⋆ in all statements. Define the set of Γ-invariant, p-allowable indices:

SΓ
p (Ω1, λp) = {α ∈ Sp(Ω1, λp) : σ

♯(eα) = eα for all σ ∈ Γ}. (6.13)

This is by definition a subset of the p-allowable multi-indices and will underlie our trans-
formation laws for the MBK and MBP.

Proposition 6.14. We have equality of the following sets{
eβ : β ∈ SΓ

p (Ω1, λp)
}
=
{

1
detAΦ

♯(eα) : α ∈ Sp(Ω2)
}
.



PROJECTIONS ONTO BERGMAN SPACES 31

Proof. Thinking of α as an element of Z1×n, computation shows that eα ◦ΦA = eαA. Thus
Φ♯(eα) = (detA)e(α+1)A−1, so we have{

1
detAΦ

♯(eα) : α ∈ Sp(Ω2)
}
= {e(α+1)A−1 : α ∈ Sp(Ω2)}. (6.15)

Since the image of Ap(Ω2) under Φ
♯ is the space [Ap(Ω1, λp)]

Γ, we see

{e(α+1)A−1 : α ∈ Sp(Ω2)} ⊂ {eβ : β ∈ Sp(Ω1, λp), σ
♯(eβ) = eβ for all σ ∈ Γ}.

But since the map Φ♯ : Ap(Ω2) → [Ap(Ω1, λp)]
Γ is linear, Φ♯(f) must have more than one

term in its Laurent expansion if f has more than one term in its Laurent expansion. Thus

{e(α+1)A−1 : α ∈ Sp(Ω2)} = {eβ : β ∈ Sp(Ω1, λp), σ
♯(eβ) = eβ for all σ ∈ Γ}

=
{
eβ : β ∈ SΓ

p (Ω1, λp)
}
.

□

Proposition 6.16. The collection
{
eα : α ∈ SΓ

p (Ω1, λp)
}
is a Schauder basis of the Banach

space [Ap(Ω1, λp)]
Γ in the sense of Definition 2.1, that is, with respect to the Schauder

exhaustion by square partial sums.

Proof. We need to show that for f ∈ [Ap(Ω1, λp)]
Γ, the partial sums∑

|α|∞≤N

α∈SΓ
p (Ω1,λp)

aα(f)eα

converge to f in the norm of Lp(Ω1, λp). In view of Theorem 2.16, we need to show that
the Laurent expansion of f contains only those monomials eα with α ∈ SΓ

p (Ω1, λp). Now
by Theorem 2.16, we have

f = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω1,λp)

aα(f)eα,

so for σν ∈ Γ as in (6.11b) for some ν ∈ Zn×1, applying the isometric automorphism σ♯ν of
Ap(Ω, λp) to both sides, we have

σ♯ν(f) = lim
N→∞

∑
|α|∞≤N

α∈Sp(Ω1,λp)

aα(f)σ
♯
ν(eα) = lim

N→∞

∑
|α|∞≤N

α∈Sp(Ω1,λp)

e2πi(α+1)A
−1νaα(f)eα,

using the formula (6.11c). Since σ♯ν(f) = f , the uniqueness of Laurent expansions now gives

that for each α, either we have aα(f) = 0 or σ♯ν(eα) = eα. Since this is true for each ν, the
result follows. □

Definition 6.17. A bounded linear projection PΩ1
p,λp,Γ

from [Lp(Ω1, λp)]
Γ onto [Ap(Ω1, λp)]

Γ

is called the Γ-Invariant Monomial Basis Projection of Ap(Ω1, λp) if for f ∈ [Lp(Ω, λ)]Γ,

PΩ1
p,λp,Γ

(f) = lim
N→∞

∑
|α|∞≤N

α∈SΓ
p (Ω1,λp)

âα(f)eα, (6.18)

where the series converges in the norm of Lp(Ω, λ). Here âα : [Lp(Ω1, λp)]
Γ → C is the

Hahn-Banach extension of the coefficient functional aα : [Ap(Ω1, λp)]
Γ → C.

Remark 6.19. By taking A = [Ap(Ω1, λp)]
Γ and E = [Lp(Ω1, λp)]

Γ in Corollary 2.5, we see
that the Hahn-Banach extension âα is unique. ♢
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Remark 6.20. By taking A = [Ap(Ω1, λp)]
Γ and L = [Lp(Ω1, λp)]

Γ in Definition 2.6, we see

that PΩ1
p,λp,Γ

is the basis projection from A onto L determined by {eα : α ∈ SΓ
p (Ω, λp)}. ♢

Along with the Γ-invariant MBP defined in (6.18), we can also consider the basis projec-

tion from Lp(Ω1, λp) onto [Ap(Ω1, λp)]
Γ. In the notation of (4.19), this is the subprojection

PB corresponding to B = SΓ
p (Ω, λ). Denote this operator by PSΓ

p (Ω,λ).

Proposition 6.21. The following statements are equivalent.

(1) The subprojection PSΓ
p (Ω,λp) : L

p(Ω1, λp) → [Ap(Ω1, λp)]
Γ exists.

(2) The Γ-invariant MBP PΩ1
p,λp,Γ

: [Lp(Ω1, λp)]
Γ → [Ap(Ω1, λp)]

Γ exists.

Proof. To show (1) =⇒ (2), it is clear that if PSΓ
p (Ω,λp) exists, the Γ-invariant MBP PΩ1

p,λp,Γ

also exists, since by Corollary 2.5 it is the restriction

PSΓ
p (Ω,λ)

∣∣
[Lp(Ω1,λp)]

Γ = PΩ1
p,λp,Γ

. (6.22)

To show (2) =⇒ (1), consider the operator Π on Lp(Ω1, λp) given by

Πf =
1

|Γ|
∑
σ∈Γ

σ♯f, (6.23)

where σ♯ is as in (6.1). It is easy to see that σ♯ is an isometric self-isomorphism of the
Banach space Lp(Ω1, λp), and therefore we have

∥Πf∥Lp(Ω1,λp)
≤ 1

|Γ|
∑
σ∈Γ

∥∥∥σ♯f∥∥∥
Lp(Ω1,λp)

=
1

|Γ|
∑
σ∈Γ

∥f∥Lp(Ω1,λp)
= ∥f∥Lp(Ω1,λp)

,

so that the operator norm ∥Π∥op ≤ 1. On the other hand, it is easy to see that Πf = f if

and only if f ∈ [Lp(Ω1, λp)]
Γ, so Π : Lp(Ω1, λp) → [Lp(Ω1, λp)]

Γ is a projection operator of
norm 1.

Now consider the composition of the two bounded projections

T = PΩ1
p,λp,Γ

◦Π : Lp(Ω1, λp) → [Ap(Ω1, λp)]
Γ,

which is itself a projection operator bounded in the norm of Lp(Ω1, λp). Since the operator

PΩ1
p,λp,Γ

takes the form as described by (6.18), we have

T f =
∑

α∈SΓ
p (Ω1,λp)

(âα ◦Π)(f)eα.

Notice however that, the norms of the functionals âα ◦Π : Lp(Ω1, λp) → C are given by

∥âα ◦Π∥Lp(Ω1,λp)′
≤ ∥âα∥([Lp(Ω1,λp)]Γ)′

∥Π∥op = ∥âα∥([Lp(Ω1,λp)]Γ)′
= ∥aα∥([Ap(Ω1,λp)]Γ)′

,

where the last equality holds since âα is the Hahn-Banach extension of aα to [Lp(Ω1, λp)]
Γ.

It follows that âα ◦Π = ãα, where ãα is the Hahn-Banach extension of aα to Lp(Ω1, λp) and
consequently T is the basis projection PSΓ

p (Ω,λ), which is therefore bounded. □

This leads to the following integral representation of the Γ-invariant MBP:

Proposition 6.24. The Γ-invariant MBP PΩ1
p,λp,Γ

: [Lp(Ω1, λp)]
Γ → [Ap(Ω1, λp)]

Γ admits

the integral representation

PΩ1
p,λp,Γ

f(z) =

∫
Ω1

KΩ1
p,λp,Γ

(z, w)f(w)λp(w) dV (w), f ∈ [Lp(Ω1, λp)]
Γ, (6.25)
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where KΩ1
p,λp,Γ

is the subkernel determined by B = SΓ
p (Ω1, λp) as in (4.18):

KΩ1
p,λp,Γ

(z, w) =
∑

α∈SΓ
p (Ω1,λp)

eα(z)χ∗
peα(w)

∥eα∥pp,λp

=
∑

α∈SΓ
p (Ω1,λp)

eα(z)eα(w)|eα(w)|p−2

∥eα∥pp,λp

. (6.26)

We call KΩ1
p,λp,Γ

the Γ-invariant Monomial Basis Kernel of Ap(Ω1, λp).

Proof. Proposition 4.20 shows that for f ∈ Lp(Ω1, λp) the integral operator in (6.25) rep-

resents the subprojection PSΓ
p (Ω,λ) : L

p(Ω1, λp) → [Ap(Ω1, λp)]
Γ, which is known to exist by

Proposition 6.21 above. Restricting f to the subspace [Lp(Ω1, λp)]
Γ and using the relation

(6.22) the result follows. □

6.6. A transformation law. Assuming the conditions of Hypothesis⋆, we obtain a trans-
formation law for the Monomial Basis Projection under monomial maps.

Theorem 6.27. The following statements are equivalent.

(1) The MBP PΩ2
p,1 : Lp(Ω2) → Ap(Ω2) exists.

(2) The Γ-invariant MBP PΩ1
p,λp,Γ

: [Lp(Ω1, λp)]
Γ → [Ap(Ω1, λp)]

Γ exists.

When these equivalent statements hold,

Φ♯ ◦ PΩ2
p,1 = PΩ1

p,λp,Γ
◦ Φ♯ (6.28)

as bounded operators on Lp(Ω2). Additionally, if the MBP PΩ1
p,λp

: Lp(Ω1, λp) → Ap(Ω1, λp)

exists, the following diagram commutes (where ↪→ denotes inclusion, and ∼= denotes homo-
thetic isomorphim):

Lp(Ω2) [Lp(Ω1, λp)]
Γ Lp(Ω1, λp)

Ap(Ω2) [Ap(Ω1, λp)]
Γ Ap(Ω1, λp).

Φ♯

∼=

P
Ω2
p,1

P
Ω1
p,λp,Γ P

Ω1
p,λp

Φ♯

∼=

(6.29)

Remark 6.30. We can relax the last hypothesis on the existence of PΩ1
p,λp

and give an analo-

gous diagram where the rightmost vertical arrow is replaced by the integral operator below.
Assuming (1) and (2), the operator PΩ1

p,λp,Γ
admits an integral representation involving the

full MBK of the Bergman space Ap(Ω1, λp):

PΩ1
p,λp,Γ

f(z) =

∫
Ω1

KΩ1
p,λp

(z, w)f(w)λp(w) dV (w), f ∈ [Lp(Ω1, λp)]
Γ.

This lets us sidestep direct reference to the Γ-invariant MBK. Of course, the operator
represented by this integral coincides with PΩ1

p,λp
when the latter operator exists. ♢

Proof. By (6.6), the map Φ♯ is a homothetic isomorphism from Lp(Ω2) onto [Lp(Ω1, λp)]
Γ

which by (6.8) restricts to homothetic isomorphism of the holomorphic subspaces Ap(Ω2)

and [Ap(Ω1, λp)]
Γ. Proposition 2.13 therefore says that PΩ2

p,1 exists if and only if the induced

basis projection Q from [Lp(Ω1, λp)]
Γ onto [Ap(Ω1, λp)]

Γ exists, where Q is determined by

the induced Schauder basis of [Ap(Ω1, λp)]
Γ consisting of the set

{Φ♯(eα) : α ∈ Sp(Ω2)}, (6.31)
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together with its Schauder exhaustion by square partial sums in the index α. When these
equivalent operators exist, the following diagram commutes:

Lp(Ω2) [Lp(Ω1, λp)]
Γ

Ap(Ω2) [Ap(Ω1, λp)]
Γ .

Φ♯

∼=

P
Ω2
p,1

Q

Φ♯

∼=

Since Proposition 2.8 allows for a re-scaling of the basis elements in (6.31) without chang-

ing the operator, Q can be equivalently viewed as the basis projection from [Lp(Ω1, λp)]
Γ

onto [Ap(Ω1, λp)]
Γ corresponding to the Schauder basis elements{

1
detAΦ

♯(eα) : α ∈ Sp(Ω2)
}
= {e(α+1)A−1 : α ∈ Sp(Ω2)}, (6.32)

still under the exhaustion by square partial sums in α. Recall that the equality of sets in
(6.32) was previously noted in (6.15). The Schauder exhaustion corresponding to the set of
monomials on the right hand side of (6.32) can be expressed in more explicit terms by

BN = {(α+ 1)A− 1 : |α|∞ ≤ N} ∩ Sp(Ω1, λp). (6.33)

Proposition 6.14 shows that, by setting β = (α + 1)A − 1, the Schauder basis in (6.32)
determined by the exhausting sequence {BN}∞N=1 can re-expressed as the set of monomials

{eβ : β ∈ SΓ
p (Ω1, λp)},

together with its Schauder exhaustion by the sets

B̃N =
{
β :
∣∣(β + 1)A−1 − 1

∣∣
∞ ≤ N

}
∩ Sp(Ω1, λp).

Consequently, letting f ∈ [Lp(Ω1, λp)]
Γ, the basis projection Q is given by

Qf = lim
N→∞

∑
β∈B̃N

âβ(f)eβ, (6.34)

where âβ is the unique Hahn-Banach extension of the functional aβ to [Lp(Ω1, λp)]
Γ.

We now claim that the indexing sequence {B̃N}∞N=1 appearing in the sum (6.34) can be
replaced by the standard Schauder exhaustion by square partial sums

CN = {β ∈ SΓ
p (Ω1, λp) : |β|∞ ≤ N}

without changing the operator Q.
To see this, consider the operator Q ◦ Π, where Π : Lp(Ω1, λp) → [Lp(Ω1, λp)]

Γ is the
“norm 1” linear projection defined in (6.23). By giving an argument identical to the one in
the last paragraph of Proposition 6.21, we see that for β ∈ SΓ

p (Ω1, λp), âβ◦Π = ãβ, where ãβ :
Lp(Ω1, λp) → C is the unique Hahn-Banach extension of the (already partially extended)
functional α̂β : [Lp(Ω1, λp)]

Γ → C. This implies that Q ◦Π is the subprojection (see (4.19))

of Lp(Ω1, λp) → [Ap(Ω1, λp)]
Γ determined by the Schauder exhaustion {B̃N}∞N=1.

Recall now the Γ-invariant MBP from Definition 6.17, which can be written as

PΩ1
p,λp,Γ

f = lim
N→∞

∑
β∈CN

âα(f)eα.

In the proof of Proposition 6.21, we have seen that PΩ1
p,λp,Γ

◦ Π is the subprojection in the

sense of (4.19) from Lp(Ω1, λp) → [Ap(Ω1, λp)]
Γ determined by the exhaustion {CN}∞N=1.
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Corollary 4.22 equates these two subprojections, saying that the subprojections are in-
dependent of the choices of Schauder exhaustions. In other words, for g ∈ Lp(Ω1, λp),

Q ◦Π(g) = lim
N→∞

∑
β∈B̃N

(âβ ◦Π)(g)eβ = lim
N→∞

∑
β∈CN

(âβ ◦Π)(g)eβ = PΩ1
p,λp,Γ

◦Π(g).

Now by restricting both sides to f ∈ [Lp(Ω1, λp)]
Γ, we see that

Q(f) = lim
N→∞

∑
β∈B̃N

âβ(f)eβ = lim
N→∞

∑
β∈CN

âβ(f)eβ = PΩ1
p,λp,Γ

(f), (6.35)

and so as operators Q = PΩ1
p,λp,Γ

. This completes the proof that the left quadrilateral in the

diagram (6.29) commutes and (6.28) holds.
We see from (6.11b) that each σ ∈ Γ is a biholomorphic automorphism of the Reinhardt

domain Ω1 which multiplies each coordinate by a complex number of absolute value 1.
This means the complex Jacobian matrix σ′ is a diagonal matrix whose entries are complex
numbers of absolute value 1, which implies | detσ′| = 1. It follows that we have an isometric
isomorphism of Banach spaces induced by σ

σ♯ : Lp(Ω1, λp) → Lp(Ω1, λp),

which restricts to an isometric isomorphism of the holomorphic subspaces. Therefore by
Proposition 2.13, if the MBP PΩ1

p,λp
exists, we have a commutative diagram:

Lp(Ω1, λp) Lp(Ω1, λp)

Ap(Ω1, λp) Ap(Ω1, λp),

σ♯

∼=
P

Ω1
p,λp R

σ♯

∼=

where R is the basis projection from Lp(Ω1, λp) onto A
p(Ω1, λp) with respect to the induced

basis {σ♯(eα) : α ∈ Sp(Ω1, λp)}. But by (6.11c), we have that σ♯(eα) = cαeα for some
complex number cα of absolute value 1, so it follows by Proposition 2.8 that in fact R =
PΩ1
p,λp

. Therefore,

σ♯ ◦ PΩ1
p,λp

= PΩ1
p,λp

◦ σ♯

as operators on Lp(Ω1, λp). Now suppose that f ∈ [Lp(Ω1, λp)]
Γ, so that for each σ ∈ Γ we

have σ♯f = f . Therefore for each σ ∈ Γ:

PΩ1
p,λp

f = PΩ1
p,λp

(σ♯f) = σ♯(PΩ1
p,λp

f), (6.36)

which shows that PΩ1
p,λp

maps [Lp(Ω1, λp)]
Γ into the subspace [Ap(Ω1, λp)]

Γ.

Using the definition of the MBP together with the fact that σ♯ is an isometric isomor-
phism, we can write the first and last terms in (6.36) as

PΩ1
p,λp

f =
∑

α∈Sp(Ω1,λp)

ãα(f)eα, and σ♯(PΩ1
p,λp

f) =
∑

α∈Sp(Ω1,λp)

ãα(f)σ
♯(eα),

where convergence of square partial sums in the norm of Lp(Ω1, λp) is implied. Since these
are equal, by the uniqueness of expansions with respect to Schauder bases, we see that the
only nonzero terms correspond to those monomials eα for which eα = σ♯(eα). Since this
holds for each σ ∈ Γ, only those monomials eα with α ∈ SΓ

p (Ω1, λp) occur in the series, and

we conclude that for each f ∈ [Lp(Ω1, λp)]
Γ we have

PΩ1
p,λp

f =
∑

α∈SΓ
p (Ω1,λp)

ãα(f)eα = PΩ1
p,λp,Γ

f.
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This completes the proof of the commutativity of the right rectangle in (6.29). □

7. Transforming the absolute monomial basis operator

7.1. Density-bundle pullbacks. In this section we consider a more general description
of the pullback operation for real maps. This arises naturally by thinking of functions as
coefficients of densities rather than of forms. Let Ω1,Ω2 be open sets in Rd, and ϕ : Ω1 → Ω2

a smooth map. For a function f on Ω2, define the (one-half) density-bundle pullback of f ,
denoted by ϕ♭f , to be the function on Ω1 given by

ϕ♭f = f ◦ ϕ · |detDϕ|
1
2 , (7.1)

where as before, Dϕ denotes the d×d Jacobian matrix of ϕ. One can think of ϕ♭ invariantly
as the pullback operation on the space of 1

2 -densities (see [Nic07, pp. 113 ff.]). From the
change of variables formula, it follows that if ϕ : Ω1 → Ω2 is a diffeomorphism, then
the induced map ϕ♭ : L2(Ω2) → L2(Ω1) is an isometric isomorphism of Hilbert spaces.
When Ω1,Ω2 are domains in a complex Euclidean space Cn and the map ϕ : Ω1 → Ω2 is
holomorphic, then

ϕ♭f = f ◦ ϕ ·
∣∣detϕ′∣∣ , (7.2)

where as before, ϕ′ denotes the complex derivative.
The density-bundle pullback leads to a new notion of invariant functions (note carefully

the location of the symbol Γ in (7.4), as compared to (6.4)):

Definition 7.3. Given a domain Ω ⊂ Cn, group Γ ⊂ Aut(Ω) and function space F consisting
of functions on Ω, define the subspace

[F]Γ = {f ∈ F : f = σ♭(f) for all σ ∈ Γ}, (7.4)

where σ♭ is the density-bundle pullback in (7.2). Functions in [F]Γ are said to be “Γ-invariant
in the ♭ sense”, or simply “♭-invariant” when Γ is clear from context.

Under proper holomorphic mappings, the behavior of the ♭-pullback regarding Lp-spaces
and ♭-invariant functions is directly analogous to the behavior of the ♯-pullback regarding
Lp-spaces and ♯-invariant functions (as described in (6.6) above):

Proposition 7.5. Let 1 < p < ∞, Ω1,Ω2 be domains in Cn and Φ : Ω1 → Ω2 be a proper
holomorphic map of quotient type with respect to the group Γ ⊂ Aut(Ω1). Then

Φ♭ : L
p(Ω2) → [Lp(Ω1, λp)]Γ (7.6)

is a homothetic isomorphism.

Proof. Let f ∈ Lp(Ω2). By Definition 6.2, there exist varieties Z1 ⊂ Ω1, Z2 ⊂ Ω2 such that
Φ : Ω1\Z1 → Ω2\Z2 is a regular covering map of order |Γ|. Using the change of variables
formula (accounting for the fact that Φ is a |Γ|-to-one mapping), we see

|Γ| ∥f∥pLp(Ω2)
= |Γ|

∫
Ω2\Z2

|f |p dV =

∫
Ω1\Z1

|f ◦ Φ|p| detΦ′|2 dV = ∥Φ♭(f)∥
p
Lp(Ω1,λp)

, (7.7)

which shows Φ♭(f) ∈ Lp(Ω1, λp). Observe also that for any σ ∈ Γ,

σ♭(f ◦ Φ · | detΦ′|) = (f ◦ Φ) ◦ σ · | det(Φ′ ◦ σ)| · | detσ′| = f ◦ (Φ ◦ σ) · | det(Φ ◦ σ)′|
= f ◦ Φ · | detΦ′|,

showing that Φ♭(f) ∈ [Lp(Ω1, λp)]Γ. This shows Φ♭ is a homothetic isomorphism of Lp(Ω2)
onto a subspace of [Lp(Ω1, λp)]Γ.

It remains to show that this image is the full space. By a partition of unity argument,
it is sufficient to show that a function g ∈ [Lp(Ω1, λp)]Γ is in the range of Φ♭, provided the
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support of g is contained in a set of the form Φ−1(U), where U is an connected open subset
of Ω2 \Z2 evenly covered by the covering map Φ. Notice that Φ−1(U) is a disjoint collection
of connected open components each biholomorphic to U , and if U0 is one of them, Φ−1(U)
is the disjoint union

⋃
σ∈Γ σ(U0). Let Ψ : U → U0 be the local inverse of Φ onto U0. Define

f0 on U by
f0 = Ψ♭ (g|U0) . (7.8)

We claim that f0 is defined independently of the choice of the component U0 of Φ−1(U).
Indeed, any other choice is of the form σ(U0) for some σ ∈ Γ and the corresponding local
inverse is σ ◦Ψ. But we have

(σ ◦Ψ)♭
(
g|σ(U0)

)
= Ψ♭ ◦ σ♭

(
g|σ(U0)

)
= Ψ♭ (g|U0) = f0,

where we have used the fact that σ♭g = g since g ∈ [Lp(Ω1, λp)]Γ. A partition of unity
argument completes the proof. □

7.2. Transforming the Absolute Monomial Basis Operator. All statements in this
section assume Hypothesis ⋆. See Section 6.4 to recall the assumptions on the proper
holomorphic monomial map Φ : Ω1 → Ω2, the group Γ, the weight λp, etc.

We prove a transformation law for Absolute Monomial Basis Operator (AMBO), the

absolute operator in the sense of (4.24) associated to the MBK KΩ2
p,1:

(PΩ2
p,1 )

+f(z) =

∫
Ω2

∣∣∣KΩ2
p,1(z, w)

∣∣∣ f(w) dV (w), f ∈ Cc(Ω2). (7.9)

This operator is defined on the subspace Cc(Ω2), and exists as a bounded operator if and
only if it satisfies Lp-estimates on Cc(Ω2). We relate it to a certain “Γ-invariant AMBO”
on Ω1, namely, the one obtained by integration against the absolute value of the Γ-invariant
MBK from (6.26):

(PΩ1
p,λp,Γ

)+f(z) =

∫
Ω1

∣∣∣KΩ1
p,λp,Γ

(z, w)
∣∣∣ f(w)λp(w)dV (w), f ∈ Cc(Ω1), (7.10)

where λp is the multi-radial weight given in (6.12) arising from Φ. These operators are
closely related via the density-bundle pullback of Section 7.1:

Theorem 7.11. The following statements are equivalent:

(1) (PΩ2
p,1 )

+ extends to a bounded operator (PΩ2
p,1 )

+ : Lp(Ω2) → Lp(Ω2).

(2) (PΩ1
p,λp,Γ

)+ extends to a bounded operator (PΩ1
p,λp,Γ

)+ : [Lp(Ω1, λp)]Γ → [Lp(Ω1, λp)]Γ.

When these equivalent statements hold,

Φ♭ ◦ (PΩ2
p,1 )

+ = (PΩ1
p,λp,Γ

)+ ◦ Φ♭ (7.12)

as operators on Lp(Ω2), which is to say that the following diagram commutes

Lp(Ω2) Lp(Ω1, λp)Γ

Lp(Ω2) Lp(Ω1, λp)Γ.

Φ♭

∼=

(P
Ω2
p,1 )

+ (P
Ω1
p,λp,Γ

)+

Φ♭

(7.13)

The key idea in the proof of Theorem 7.11 is a kernel transformation law reminiscent of
Bell’s law [Bel81, Bel82] for the Bergman kernel under proper holomorphic maps:

Proposition 7.14. The Monomial Basis Kernel admits the transformation law

KΩ1
p,λp,Γ

(z, w) =
1

|Γ|
detΦ′(z) ·KΩ2

p,1(Φ(z),Φ(w)) ·
|detΦ′(w)|p

detΦ′(w)
. (7.15)
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Proof. Starting from the series representation for KΩ2
p,1(z, w) in (3.5), we have

KΩ2
p,1(Φ(z),Φ(w)) =

∑
α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

∥eα∥pLp(Ω2)

= |Γ|
∑

α∈Sp(Ω2)

eα(Φ(z))eα(Φ(w))|eα(Φ(w))|p−2

∥Φ♯(eα)∥pLp(Ω1,λp)

, (7.16)

since by (6.7), the homothetic isomorphism Φ♯ scales norms uniformly for each f ∈ Lp(Ω2)
by |Γ| · ∥f∥pLp(Ω2)

=
∥∥Φ♯(f)

∥∥p
Lp(Ω1,λp)

. Now use the definition of Φ♯ to write

(7.16) = |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
∑

α∈Sp(Ω2)

Φ♯(eα)(z)Φ♯(eα)(w)|Φ♯(eα)(w)|p−2

∥Φ♯(eα)∥pLp(Ω1,λp)

= |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
∑

β∈SΓ
p (Ω1,λp)

eβ(z)eβ(w)|eβ(w)|p−2

∥eβ∥pLp(Ω1,λp)

(7.17)

= |Γ| detΦ′(w)

detΦ′(z)| detΦ′(w)|p
·KΩ1

p,λp,Γ
(z, w). (7.18)

Equation (7.17) follows from Proposition 6.14 and (7.18) follows from the definition of the
Γ-invariant MBK given in (6.26). This completes the proof. □

Proof of Theorem 7.11. Proposition 7.5 and (7.7) show that Φ♭ : L
p(Ω2) → Lp(Ω1, λp)Γ is

a homothetic isomorphism and that ∥Φ♭f∥
p
Lp(Ω1,λp)

= |Γ| ∥f∥pLp(Ω2)
. For f ∈ Cc(Ω2),

Φ♭ ◦ (PΩ2
p,1 )

+f(z) = | detΦ′(z)|
∫
Ω2

∣∣∣KΩ2
p,1(Φ(z), w)

∣∣∣ f(w) dV (w)

=
|detΦ′(z)|

|Γ|

∫
Ω1

∣∣∣KΩ2
p,1(Φ(z),Φ(w))

∣∣∣ f(Φ(w)) · | detΦ′(w)|2 dV (w)

=

∫
Ω1

∣∣∣KΩ1
p,λp,Γ

(z, w)
∣∣∣Φ♭f(w)λp(w) dV (w) (7.19)

= (PΩ1
p,λp,Γ

)+ ◦ Φ♭f(z).

Equality in (7.19) uses the kernel transformation law in (7.15), and the final line makes
sense since the properness of Φ guarantees Φ♭f ∈ [Cc(Ω1)]Γ.

The fact that Cc(Ω2) is dense in L
p(Ω2), along with the fact that its image Φ♭ (Cc(Ω2)) =

[Cc(Ω1)]Γ is dense in [Lp(Ω1, λp)]Γ shows that statements (1) and (2) are equivalent. When
these statements hold, equation (7.12) and Diagram (7.13) follow immediately. □

Remark 7.20. The crucial difference between the MBP transformation law (Theorem 6.27)
and its AMBO counterpart (Theorem 7.11) can be seen from their diagrams. The rightmost
column in Diagram (6.29) lets us work directly with the full MBP – or more precisely, the

integral operator with KΩ1
p,λp

as its kernel, which coincides with PΩ1
p,λp

when the MBP exists

– sidestepping any need to consider the Γ-invariant MBP. No such luxury is afforded us
when working with the AMBO, where there is no choice but to consider PΩ1

p,λp,Γ
directly. In

Section 8.2 we meet this in a concrete setting. ♢
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8. The Monomial Basis Projection on Monomial Polyhedra

In this section we show that if U is a monomial polyhedron (defined in Section 1.7 of
the introduction) and 1 < p <∞, the Monomial Basis Projection PU

p,1 of the space Ap(U )
both exists and is absolutely bounded in the sense of Definition 4.23:

Theorem 8.1. The Absolute Monomial Basis Operator

(PU
p,1)

+(f)(z) =

∫
U

∣∣∣KU
p,1(z, w)

∣∣∣ f(w) dV (w) (8.2)

is bounded from Lp(U ) → Lp(U ).

Using this result we obtain a representation of the dual space Ap(U )′ as a weighted
Bergman space on the same domain in Theorem 8.24.

8.1. Monomial polyhedra. We denote the spaces of row and column vectors with integer

entries by Z1×n and Zn×1, respectively. Suppose B = (bjk) ∈ Mn×n(Z) is a matrix of

integers with detB ̸= 0, whose rows are written as bj = (bj1, . . . , b
j
n) ∈ Z1×n. We define the

monomial polyhedron (associated to the matrix B) to be the domain,

UB = {z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n} , (8.3)

provided it is bounded. The matrix B in (8.3) is far from unique. If B′ is obtained from B
by permuting the rows, or by multiplying any row by a positive integer, then UB = UB′ .
We record the following observation, originally proved in [BCEM22, Proposition 3.2]:

Proposition 8.4. Suppose that UB is a bounded monomial polyhedron of form (8.3), with
B ∈Mn×n(Z) an invertible matrix. Without loss of generality we may assume that

(1) detB > 0.
(2) each entry in the inverse matrix B−1 is nonnegative.

General Hypothesis for Section 8. We assume that B is an integer matrix satisfying
properties (1) and (2) from Proposition 8.4 and UB is a monomial polyhedron as in (8.3).

The following representation of monomial polyhedra as quotients was first proved in
[BCEM22, Theorem 3.12]; it can be viewed as a resolution of the singularities of monomial
polyhedra via monomial maps.

Proposition 8.5. Let A = adjB = (detB)B−1 ∈ Mn×n(Z) be the adjugate of B. There
exists a product domain

Ω = U1 × · · · × Un ⊂ Cn, (8.6)

with each factor Uj equal to either a unit disc D or punctured disc D∗, such that the mono-
mial map ΦA : Cn → Cn of (6.10) restricts to a proper holomorphic map ΦA : Ω → UB.
This map is of quotient type with respect to group ΓA, which consists of automorphisms
σν : Ω → Ω given by (6.11b).

Consequently, the conditions of Hypothesis ⋆ introduced in Section 6.4 are satisfied, if
we take Ω1 = Ω, Ω2 = UB, and A,ΦA,ΓA as above in Proposition 8.5. The consequences
of Hypothesis ⋆ noted in Section 6.4 also apply, with appropriate changes of notation, as
do other results in the two previous sections assuming Hypothesis ⋆. Notice that in the
special situation of Proposition 8.5, the source Ω1 = Ω is a product domain, and the weight
λp = |Φ′

A|
2−p of (6.12) that appears in the transformation formulas has a tensor product

structure up to a constant:

λp(ζ) =
∣∣detΦ′

A(ζ)
∣∣2−p

= (detA)2−p
n∏

j=1

µγj (ζj), (8.7)
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where µγj is the weight on the factor Uj (which is D or D∗) given by

µγj (z) = |z|γj and γj = (1 · aj − 1)(2− p), (8.8)

with 1 ∈ Z1×n a row vector with 1 in each component and aj ∈ Zn×1 the j-th column of A.
We can remove the absolute value from detA since detA = (detB)n · 1

detB = detBn−1 > 0,
thanks to Proposition 8.4 and the General Hypothesis for Section 8.

8.2. The Monomial Basis Projection on monomial polyhedra. As a consequence of
the above we have the following.

Proposition 8.9. Let U be a monomial polyhedron of form (8.3). The Monomial Basis
Projection PU

p,1 of the space Ap(U ) exists.

Proof. Theorem 6.27 says the existence of the MBP PU
p,1 : Lp(U ) → Ap(U ) would follow

from verification of the stronger statement that the MBP PΩ
p,λp

: Lp(Ω, λp) → Ap(Ω, λp)

exists. Since Ω is a product domain and λp decomposes as a tensor product of weights
on the factors Uj up to a constant factor (see (8.7)), we see by (3.18) that the MBK of
Ap(Ω, λp) decomposes as (a constant multiple of) the tensor product of the MBKs on the
spaces Ap(Uj , µγj ):

KΩ
p,λp

(z, w) = (detA)p−2
n∏

j=1

K
Uj
p,µγj

(zj , wj). (8.10)

The MBK K
Uj
p,µγj

is the arithmetic progression subkernel k
Uj

p,γj ,0,1
. Therefore by Proposi-

tion 5.16, for each 1 ≤ j ≤ n, there exist functions ϕj , ψj and constants Cj
1 , C

j
2 such that∫

Uj

∣∣∣KUj
p,µγj

(z, w)
∣∣∣ψj(w)

qµγj (w) dV (w) ≤ Cj
1ϕj(z)

q,∫
Uj

ϕj(z)
p
∣∣∣KUj

p,µγj
(z, w)

∣∣∣µγj (z) dV (z) ≤ Cj
2ψj(w)

p.

The result follows by Proposition 5.11. □

8.3. Boundedness of the Absolute Monomial Basis Operator. In Proposition 8.9
we showed that the MBP of Ap(U ) exists. In this section we show that it is absolutely
bounded on Lp(U ), i.e., the AMBO (PU

p,1)
+ is bounded on Lp(U ). For this, we must better

understand the Γ-invariant kernel KΩ
p,λp,Γ

defined by (6.26), which unlike the full MBK

KΩ
p,λp

does not simply factor as a tensor product of lower-dimensional MBKs. A useful

decomposition of KΩ
p,λp,Γ

can still be given, upon viewing the set of Γ-invariant monomials

through the lens of lattice geometry. The idea behind the decomposition has interesting
parallels with some recent work on decomposition of kernels associated to some nonabelian
groups (see [DM23]).

Proposition 8.11. Let the notation and hypotheses be as in Proposition 8.5. Letting d =
detA (which is a positive integer), the Γ-invariant Monomial Basis Kernel of the space
Ap(Ω, λp) defined in (6.26) admits the decomposition

KΩ
p,λp,Γ(z, w) =

dn−1∑
i=1

Ki(z, w), (8.12)

where each Ki a tensor product of n arithmetic progression subkernels defined in (5.6):

Ki(z, w) = (detA)p−2
n∏

j=1

k
Uj

p,γj ,αi,j ,d
(zj , wj), (8.13)
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where as above, d = detA, the exponent γj is determined by (8.8) and αi,j ∈ Z/dZ is
determined by the group Γ.

Proof. Recall from (6.26) that Γ-invariant MBK is given by

KΩ
p,λp,Γ(z, w) =

∑
α∈SΓ

p (Ω,λp)

eα(z)χ∗
peα(w)

∥eα∥pp,λp

,

where, as in (6.13), we have

SΓ
p (Ω, λp) = {α ∈ Sp(Ω, λp) : σ

♯(eα) = eα for all σ ∈ Γ}
= Sp(Ω, λp) ∩ [Zn]Γ (8.14)

where [Zn]Γ is defined to be the subset of Z1×n consisting of those multi-indices for which
the corresponding monomials are Γ-invariant, i.e.

[Zn]Γ = {α ∈ Z1×n : σ♯(eα) = eα for all σ ∈ Γ}.

Thanks to (6.11d), we have [Zn]Γ = {α ∈ Z1×n : α = βA−1, β ∈ Z1×n}, so after translating
by 1, we have

[Zn]Γ + 1 = Z1×nA = {βA : β ∈ Z1×n} ⊂ Z1×n.

We make two observations: first, it is known (see Lemma 3.3 of [NP21]) that Z1×nA is a
sublattice of Z1×n with index ∣∣Z1×n/(Z1×nA)

∣∣ = detA = d.

Second, we claim that Z1×nA contains dZ1×n as a sublattice, where

dZ1×n = {dβ : β ∈ Z1×n}.

Indeed, consider a vector v = dy, for some y ∈ Z1×n and check that v ∈ Z1×nA. Since
A is invertible, there is a solution x ∈ Q1×n with v = dy = xA. Write the matrix A in
terms of its rows a1, · · · , an ∈ Z1×n as A = [a1, · · · , an]T . By Cramer’s rule, we see the j-th
component of x is

xj =
det
(
[a1, · · · , aj−1, dy, aj+1, · · · , an]T

)
detA

= det
(
[a1, · · · , aj−1, y, aj+1, · · · , an]T

)
∈ Z,

confirming that x ∈ Z1×n, and therefore that dZ1×n is a sublattice of Z1×nA.
Since it is clear that the index

∣∣Z1×n/dZ1×n
∣∣ = dn, by the Third Isomorphism Theorem

for groups (see Section 3.3 in [DF04]) we see that∣∣Z1×nA/dZ1×n
∣∣ = ∣∣Z1×n/dZ1×n

∣∣
|Z1×n/Z1×nA|

= dn−1.

It now follows that we have a representation of the group Z1×nA as a disjoint union of dn−1

cosets of the subgroup dZ1×n, i.e., there are ℓi ∈ Z1×nA, such that we have

Z1×nA = [Zn]Γ + 1 =
dn−1⊔
i=1

(dZ1×n + ℓi),

where
⊔

denotes disjoint union. Therefore, we have

[Zn]Γ =

dn−1⊔
i=1

(dZ1×n + ℓi)

− 1 =
dn−1⊔
i=1

(
dZ1×n + (ℓi − 1)

)
.
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Fix an i, 1 ≤ i ≤ dn−1 and write ℓi = (ℓi1, . . . , ℓ
i
n) with ℓ

i
j ∈ Z. Then we have

dZ1×n + (ℓi − 1) = {(d · ν1 + ℓi1 − 1, . . . , d · νn + ℓin − 1), ν1, . . . , νn ∈ Z}

=

n∏
j=1

{α ∈ Z : α ≡ ℓij − 1 mod d}, (8.15)

where in the last line we have the cartesian product of n sets of integers.
We now analyze the other intersecting set Sp(Ω, λp) in (8.14). Let α ∈ Zn. Since we

have eα(z) =
∏n

j=1 eαj (zj), by the tensor product representation (up to a constant) (8.7) of
the weight λp and the Tonelli-Fubini theorem we obtain the following representation of the
norm of the monomial eα on Ω in terms of the norms of the eαj on the factors Uj :

∥eα∥pLp(Ω,λp)
= (detA)2−p ·

n∏
j=1

∥∥eαj

∥∥p
Lp(Ujµγj )

, (8.16)

where it is possible that both sides are infinite. The left-hand side is finite, i.e., α ∈
Sp(Ω, λp), if and only if each factor on the right-hand side is finite, i.e., for each 1 ≤ j ≤ n
we have αj ∈ Sp(Uj , µγj ). Consequently we obtain a cartesian product representation of
sets

Sp(Ω, λp) =

n∏
j=1

Sp(Uj , µγj ). (8.17)

Therefore, by (8.14), we have

SΓ
p (Ω, λp) = Sp(Ω, λp) ∩

dn−1⊔
i=1

(
(dZ1×n + ℓi)− 1

) =
dn−1⊔
i=1

Li,

where

Li = Sp(Ω, λp) ∩
(
(dZ1×n + ℓi)− 1

)
by definition

=

 n∏
j=1

Sp(Uj , µγj )

⋂ n∏
j=1

{α ∈ Z : α ≡ ℓij − 1 mod d}

 by (8.15) and (8.17)

=
n∏

j=1

(
Sp(Uj , µγj ) ∩ {α ∈ Z : α ≡ ℓij − 1 mod d}

)
=

n∏
j=1

A(Uj , p, γj , ℓ
i
j − 1, d), (8.18)

where the last equality follows from the definition (5.1). We now define

Ki(z, w) =
∑
α∈Li

eα(z) · χ∗
peα(w)

∥eα∥pp,λp

, (8.19)

we certainly have (8.12), since by absolute convergence we can rearrange the series defining

KΩ1
p,λp,Γ

. Now, using (8.16), and the tensor-product representations of eα and χ∗
peα, we see

that for α ∈ Li we have

eα(z) · χ∗
peα(w)

∥eα∥pp,λp

= (detA)p−2 ·
n∏

j=1

eαj (zj) · χ∗
peαj (wj)∥∥eαj

∥∥p
p,µγj

, (8.20)
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where for each j, we have αj ∈ A(Uj , p, γj , ℓ
i
j − 1, d), and on the right hand side χp : C → C

is the one-dimensinal version of the map (1.8). Using (8.18) and (8.20), we can rearrange
the sum (8.19) as

Ki(z, w) = (detA)p−2 ·
n∏

j=1

 ∑
αj∈A(Uj ,p,γj ,ℓij−1,d)

eαj (zj) · χ∗
peαj (wj)∥∥eαj

∥∥p
p,µγj

 (8.21)

= (detA)p−2 ·
n∏

j=1

k
Uj

p,γj ,ℓij−1,d
(zj , wj)

where the rearrangement in (8.21) is justified since each of the n factor series on the right
hand side is absolutely convergent. This completes the proof. □

Proof of Theorem 8.1. Theorem 7.11 shows that (PU
p,1)

+ : Lp(U ) → Lp(U ) is a bounded

operator if and only if (PΩ
p,λp,Γ

)+ : [Lp(Ω, λp)]Γ → [Lp(Ω, λp)]Γ is bounded. From formula

(8.12) we see that ∣∣∣KΩ
p,λp,Γ(z, w)

∣∣∣ ≤ dn−1∑
i=1

|Ki(z, w)| . (8.22)

Formula (7.10) defining the operator (PΩ
p,λp,Γ

)+ therefore shows that it suffices to prove that

for each 1 ≤ i ≤ n, the operator

f 7→
∫
Ω
|Ki(·, w)| f(w)λp(w)dV (w)

is bounded on Lp(Ω, λp). Formula (8.13) now gives

|Ki(z, w)| = (detA)p−2 ·
n∏

j=1

∣∣∣kUj

p,γj ,αi,j ,d
(zj , wj)

∣∣∣ .
Thanks to Proposition 5.16 for each 1 ≤ j ≤ n there exist functions ϕj , ψj and constants

Cj
1 , C

j
2 such that ∫

Uj

∣∣∣kUj

p,γj ,αi,j ,d
(z, w)

∣∣∣ψj(w)
qµγj (w) dV (w) ≤ C1ϕj(z)

q,∫
Uj

ϕj(z)
p
∣∣∣kUj

p,γj ,αi,j ,d
(z, w)

∣∣∣µγj (z) dV (z) ≤ C2ψj(w)
p.

The result follows by Proposition 5.11. □

8.4. Dual spaces on monomial polyhedra. The general duality theory developed in
Section 4.4 together with the Lp-boundedness of the AMBO (PU

p,1)
+ established in previous

section has immediate implications in characterizing the dual space of Ap(U ).
On monomial polyhedra, the general duality statement given in Proposition 4.36 simpli-

fies due to the following observation:

Proposition 8.23. Let U ⊂ Cn be a monomial polyhedron of the form (8.3). Then for

each m > 0, the Reinhardt power U (m) = U .
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Proof. Write U = UB, where the rows of B are written as bj = (bj1, . . . , b
j
n) ∈ Z1×n. From

the definition of the Reinhardt power of a domain given in (3.9), we see

U (m) = {z ∈ Cn : (|z1|
1
m , . . . , |zn|

1
m ) ∈ U }

= {z ∈ Cn : |ebj
(
|z1|

1
m , . . . , |zn|

1
m
)
| < 1, 1 ≤ j ≤ n}

=
{
z ∈ Cn : |ebj (z)|

1
m < 1, 1 ≤ j ≤ n

}
=
{
z ∈ Cn : |ebj (z)| < 1, 1 ≤ j ≤ n

}
= U .

□

Theorem 8.1 shows that for 1 < p < ∞, the AMBO (PU
p,1)

+ is a bounded operator on

Lp(U ). This fact can be combined with Proposition 8.23 and Proposition 4.36 to show the
following

Theorem 8.24. The duality pairing of Lp(U )×Lq(U , ηq) → C given in (4.30) by (f, g) 7→
{f, g}p,1 restricts to a duality pairing on the holomorphic subspaces

Ap(U )×Aq(U , ηq) → C.
This gives the identification of the dual space Ap(U )′ with Aq(U , ηq).

Proof. The boundedness of (PU
p,1)

+ in Lp(U ) allows for the use of Proposition 4.36. In this

setting U (p−1) = U by Proposition 8.23, which yields the result. □

9. Comparison with the Bergman projection

In this section we compare the behavior of the Bergman projection on Lp, p ̸= 2, with
that of the MBP on certain domains where the Bergman projection is not well-behaved.
Let Ω ⊂ Cn be a bounded Reinhardt domain such that the origin lies on its boundary, the
simplest example being the punctured disc D∗ = {z ∈ C : 0 < |z| < 1}. The anomalous
nature of the singularity is already seen in the classical Riemann removable singularity
theorem: a holomorphic function on D∗ which is bounded near the boundary point 0 of
this domain extends to a function holomorphic on D. A higher dimensional version of this
phenomenon was noticed by Sibony in [Sib75] in the Hartogs triangle and generalized in

[Cha19]: there is a larger domain Ω̃ such that each holomorphic function on Ω which extends

C∞-smoothly to the origin in fact extends holomorphically to Ω̃.
In understanding the Lp function theory of a bounded Reinhardt domain Ω ⊂ Cn with

boundary passing through the origin, it is useful to consider the behavior of the sets of
p-allowable indices introduced in Section 1.4

Sp(Ω) = {α ∈ Zn : eα ∈ Lp(Ω)},
as p traverses the interval (1,∞). It is clear that the sets can only shrink as p increases,
as fewer monomials become integrable due to increase in the exponent p in the integral∫
Ω |eα|p dV . However, the set Sp(Ω) is always nonempty, since Nn ⊂ Sp(Ω), Ω being
bounded. For example on the punctured disc, if p < 2, then Sp(D∗) = {α ∈ Z : α ≥ −1},
and if p ≥ 2, then Sp(D∗) = {α ∈ Z : α ≥ 0}. The exponent p = 2 where the set of indices
shrinks is a so-called threshold. On a monomial polyhedron U , it was shown in [BCEM22]
that there is a positive integer κ(U ) from which the two thresholds closest to p = 2 are
easily determined. Define

q∗ =
2κ(U )

κ(U ) + 1
, p∗ =

2κ(U )

κ(U )− 1
.

Notice that q∗ < 2 < p∗ and that p∗ and q∗ are Hölder conjugates. The smallest threshold
greater than 2 is p∗, and for each p with 2 ≤ p < p∗, we have Sp(U ) = S2(U ). The largest
threshold less than 2 is q∗ and for each q∗ ≤ p < 2, Sq∗(U ) = Sp(U ). It is no accident
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that the range of values of p for which the Bergman projection is bounded in Lp(U ) is
q∗ < p < p∗, as seen in (1.11) above ([BCEM22, Theorem 1.2]).

9.1. The Lp-irregularity of the Bergman projection. Outside the interval (q∗, p∗),
the Lp-boundedness of the Bergman projection on the monomial polyhedron U fails in
different ways depending on whether p ≥ p∗ or p ≤ q∗. Since U is bounded, we have
Lp(U ) ⊂ L2(U ) if p ≥ p∗ > 2, so the integral operator defining the Bergman projection in
(1.1) is defined for each f ∈ Lp(U ). The failure of boundedness of the Bergman projection
corresponds to the fact that there are functions f ∈ Lp(U ) for which the projection BU f
is not in Ap(U ). It is easy to give an explicit example when U = H, the Hartogs triangle.

Suppose p ≥ 2κ(H)
κ(H)−1 = 4 and let f(z) = z2, which is bounded and therefore in Lp(H). A

computation shows that there is a constant C such that BHf(z) = Cz2
−1 /∈ Lp(H). This

idea can be generalized to an arbitrary monomial polyhedron U to show that if p ≥ p∗,
there is a function in Lp(U ) which projects to a monomial which is in L2(U ) but not in
Lp(U ). In [CZ16] the range of the map BH : Lp(H) → L2(H) for p ≥ 4 was identified as
a weighted Lp-Bergman space strictly larger than Lp(H), and a similar result holds on any
monomial polyhedron. Recent work of Huo and Wick [HW20] also shows that BH is of
weak-type (4,4). For p ≤ q∗, the situation is worse:

Proposition 9.1. If 1 < p ≤ 2κ(U )
κ(U )+1 and z ∈ U , there is a function f ∈ Lp(U ) such that∫

U
BU (z, w)f(w) dV (w)

diverges. Consequently there is no way to extend the Bergman projection to Lp(U ) using
its integral representation.

Proof. Let q denote the Hölder conjugate of p so that q ≥ 2κ(U )
κ(U )−1 . The holomorphic function

on the Reinhardt domain U given by g(ζ) = B(ζ, z) has Laurent expansion

g(ζ) =
∑

α∈S2(U )

zα

∥eα∥2
ζα.

Since q ≥ 2κ(U )
κ(U )−1 = p∗, and the set of integrable monomials shrinks at p∗, it follows that

there is a monomial eα ∈ A2(U )\Aq(U ). Since this non-Aq monomial appears in the above
Laurent series with a nonzero coefficient, and by Theorem 2.16, the Laurent expansion of
a function in Aq can only have monomials which are in Aq, it follows that g /∈ Aq(U ). By
symmetry therefore, B(z, ·) ̸∈ Lq(U ). It now follows that there is a function f ∈ Lp(U )
such that the integral above does not converge. □

When U = H, one can show by explicit computation that if 1 < p < 4
3 = 2κ(H)

κ(H)+1 , we

can take f(w) = w−3
2 in the above result for each z ∈ H. It was shown in [HW20] that BH

fails to be weak-type (43 ,
4
3), but the above proposition shows that BH in fact does not even

exist as an everywhere defined operator on L
4
3 (H).

In contrast with the above, Proposition 8.9 guarantees that for 1 < p < ∞ and U a
monomial polyhedron, that the MBP PU

p,1 is a bounded operator from Lp(U ) onto Ap(U ),

and Theorem 4.1 says that for z ∈ U , the function KU
p,1(z, ·) ∈ Lq(U ), where 1

p + 1
q = 1.

9.2. Failure of reproducing property, 1 < p < 2. The Bergman projection extended
to Lp need not reproduce Ap, as one sees in the case of the punctured disc D∗. Here,
since A2(D∗) and A2(D) are identical, the Bergman kernels have the same formula, and the
Bergman projection on D∗ extends to a bounded operator on Lp(D∗) for every 1 < p <∞,
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but fails to be surjective onto Ap(D∗) for certain p. This happens because the range of
the Bergman projection can be naturally identified with Ap(D), and when 1 < p < 2, the
space Ap(D) is a strict subspace of Ap(D∗) (for example the function g(z) = z−1 belongs
to Ap(D∗) \ A2(D∗)). In particular, the space Ap(D∗) is not reproduced by the extended
Bergman projection, i.e., BD∗

is not the identity on Ap(D∗). In fact, the one-dimensional
span of the function g(z) = z−1 is the nullspace of the operator BD∗

restricted to Ap(D∗).
On the Hartogs triangle, it was seen in Section 9.1 that the Bergman projection is bounded

on Lp(H) for 4
3 < p < 4. However, BH fails to reproduce Ap(H) for 4

3 < p < 2. Let

N ⊂ Ap(H) be the closed subspace spanned by the monomials in Ap(H) \ A2(H). One
sees from a computation that the monomials in Ap(H) \ A2(H) are eα with α1 ≥ 0 and
α1 + α2 = −2. Then one can verify using orthogonality of Lp and Lq monomials that the
nullspace of BH restricted to Ap(H) is N , and thus again the reproducing property fails.

In contrast, the MBP of Ap(U ) accounts for all monomials appearing in the Schauder
basis {eβ : β ∈ Sp(U )}, and Proposition 8.9 shows that for 1 < p < ∞, PU

p,1 is a bounded

surjective projection of Lp(U ) onto Ap(U ). In particular, the MBP reproduces Ap(U ).

9.3. The Bergman projection and holomorphic dual spaces. The following is a
reformulation of [CEM19, Theorem 2.15]:

Theorem 9.2. Suppose that the following two conditions hold on a domain U ⊂ Cn.

(1) The absolute Bergman operator (BU )+ : Lp(U) → Lp(U) is bounded.
(2) The Bergman projection acts as the identity operator on both Ap(U) and Aq(U).

Then the sesquilinear Hölder pairing restricts to a duality pairing of Ap(U) with Aq(U):

⟨f, g⟩ =
∫
U
fg dV, f ∈ Ap(U), g ∈ Aq(U), (9.3)

providing the dual space identification Ap(U)′ ≃ Aq(U).

For instance, on smoothly bounded strongly pseudoconvex domains, properties (1) and
(2) both hold, see [PS77] and [Cat80], so the conclusion holds.

When one of the properties (1) or (2) fails, the conclusion can fail. On the punctured disc
D∗ ⊂ C, under the pairing (9.3) Ap(D∗)′ can only be identified with Aq(D∗) if p = q = 2. If
p > 2, there are non-zero elements of Aq(D∗) that represent the zero-functional on Ap(D∗).
In particular, the monomial e−1 ∈ Lq(D∗), and ⟨f, e−1⟩ = 0, for every f ∈ Ap(D∗). If p < 2,
there are functionals ϕ ∈ Ap(D∗)′ which cannot be realized by a function in Aq(D∗) via the
pairing (9.3). Consider the coefficient functional a−1 : Ap(D∗) → C mapping a function
to its coefficient of e−1(z) = z−1. This functional can not be represented by a function in
Aq(D∗) under the pairing (9.3), because ⟨e−1, f⟩ = 0 for all f ∈ Aq(D∗).

On the Hartogs triangle, let 2 < p < 4, and q be the Hölder conjugate of p. The nullspace
N ⊂ Aq(H) of the restriction of BH to Aq(H) (as discussed in Section 9.2) has the property
that if g ∈ N then ⟨f, g⟩ = 0 for every f ∈ Ap(H). Therefore, g represents the zero functional
under the pairing (9.3). Now let 4

3 < p < 2, and q be the Hölder conjugate of p. Let α ∈ Z2

with α1 ≥ 0 and α1 + α2 = −2. Then the coefficient functional aα : Ap(H) → C is a
bounded linear functional on Ap(H) by Theorem 2.16. But since ⟨eα, f⟩ = 0 for f ∈ Aq(H),
we are unable to identify aα with a function in Aq(H).

In contrast with the above, the duality theory set forth in Section 4.4 lets us characterize
duals of Bergman spaces of Reinhardt domains via the pairing (4.30) whenever the MBP is
absolutely bounded. In the case of the punctured disc, we have seen in Corollary 5.23 that

Ap(D∗)′ ≃ Aq(D∗, ηq), ηq(ζ) = (q − 1)|ζ|2q−4.
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Theorem 8.24 shows that on monomial polyhedra, the pairing of Ap(U ) and Aq(U , ηq) by
(f, g) 7→ {f, g}p,1 is a duality pairing. In the special case when U is the Hartogs triangle,

Ap(H)′ ≃ Aq(H, ηq), ηq(ζ) = (q − 1)2|ζ1ζ2|2q−4.
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