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Abstract Through examples, we illustrate how to compute differential operators on a
quotient of an affine semigroup ring by a radical monomial ideal, when working over
an algebraically closed field of characteristic 0.

1 Introduction

In this paper, we provide illustrative examples and visualizations of some differential
operators on the quotient of an affine semigroup ring by a radical monomial ideal.
These examples motivate our work in [BCK+21]. For a finitely-generated algebra
' over a field, let �(') denote the ring of differential operators of ' and use ∗ to
denote an action of a differential operator. A foundational result in this area relates
the ring of differential operators of an arbitrary quotient of a polynomial ring by an
ideal � to differential operators on that polynomial ring and the idealizer of �.
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Proposition 1 [SS88, Propostion 1.6] Let ( be the coordinate ring of a nonsingular
affine variety over an algebraically closed field of characteristic 0, and let � be an
(-ideal. Then there is an isomorphism

� ((
�
) ≅ I(�)

��(() , (1)

where I(�) ∶= {X ∈ �(') ∣ X ∗ � ⊂ �}, which is called the idealizer of �.

The phrasing of [SS88, Proposition 1.6] given above differs from the original by
making use of the equivalence of the conditions, with notation as above, of X��(() ⊂
��(() and X ∗ � ⊂ � [ST01, Lemma 2.3.1]. Traves [Tra99] uses Proposition 1
to give concrete descriptions of rings of differential operators of Stanley–Reisner
rings, and Saito and Traves [ST01] use the same to compute rings of differential
operators of affine semigroup rings. For a non-regular affine semigroup ring '� over
an algebraically closed field of characteristic 0, Proposition 1 fails, even for a radical
monomial ideal � in '�. However, the differential operators on '� that induce maps
on '�/� are precisely those in I(�). Further, there is an embedding of rings

I(�)
�('�, �)

↪ � ('�
�

) ,

so the description of �('�) by Saito and Traves can still be used to compute this
subring of �('�/�).

One primary goal of this article is to visually illustrate the computation of
I(�)/�('�, �) when '� is an affine semigroup ring and � is a radical monomial
ideal in �; in [BCK+21], we provide an explicit formula for this computation. In
particular, the pictures we provide explain how to compute differential operators of
the form

�(�, �) ∶= {X ∈ �(') ∣ X ∗ � ⊆ �},
where � and � are subsets of the ring ', and ∗ denotes an action by a differential
operator. These sets were originally instrumental in both the work of Smith and
Stafford [SS88] and of Musson [Mus89, Section 1], and they are essential building
blocks of our computations, as well.

Our second major goal in this paper is to compare ��('�) and �('�, �) for an
affine semigroup ring '� and radical monomial ideal � of '�. Towards this end,
the first set of examples we consider consists of quotients of the coordinate rings of
rational normal curves. These quotients are all isomorphic to C[G, H]/⟨GH⟩, which is
handled in [Tra99]. From the standpoint of comparing ��('�) and �('�, �), what
we will see is that ��('�) = �('�, �) for the rational normal curves of degrees
1 and 2 but fail to coincide in all degrees larger than 2. For rational normal curves
of degree at most 2, � is principally generated and so is ��('�). In this case, it is
straightforward to see (by definition) that �('�, �) is also principal and is isomorphic
to ��('�). However, for degree = > 2, � has = − 1 generators. We will see that this
number of generators greatly impacts I(�)/��('�) but not I(�)/�('�, �).

In [BCK+21], we consider cases where
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��('�) = �('�, �), (2)

for the particular ideal � generated by all monomials corresponding to the interior of
the semigroup, i.e., � = l'� . When '� is Gorenstein and normal, (2) holds since
l'� is principal. We show that the converse is also true; that is, (2) is equivalent to
'� being a Gorenstein ring.

To provide intuition beyond the two-dimensional case, we also offer a three-
dimensional normal affine semigroup ring '� for which we compute I(�)/�('�, �)
for two choices of �. Then, we return to the two-dimensional setting to consider
a scored but not normal example, as well as a non-scored example, computing
differential operators for quotients of both rings.

Outline

Section 2 fixes notation to be used throughout the article and describes the main result
of [ST01]. Sections 3, 4, and 5 describe I(�)/�('�, �) for rational normal cones of
degrees 2, 3, and higher, respectively. Section 6 considers a three-dimensional normal
affine semigroup ring modulo two different choices of radical monomial ideal �, and
Section 7 computes I(�)/�('�, �) for two different non-normal two-dimensional
affine semigroup rings, where � = l'� is the radical monomial ideal corresponding
to the interior of the semigroup N�.

2 Background and Notation

In this section, we fix notation and conventions to be assumed throughout the article.
Although the results we discuss in this paper hold over any algebraically closed field
of characteristic 0, we will use in this illustrated view the field of complex numbers
for the sake of simplicity. Having fixed notation, we will then state and discuss [ST01,
Theorem 3.2.2].

Definition 1 Let � be a : × ℓ matrix with entries in Z. Let N� denote the semigroup
in Z: that is generated by the columns of �. The affine semigroup ring determined by
� is

'� = C[N�] = ⊕
a∈N�
C ⋅ ta,

where ta = C01
1 C

02
2 ⋯C0:

:
for a = (01, 02, . . . , 0:) ∈ N�. Throughout this article, we

assume that the group generated by the columns of � is the full ambient lattice, so
Z� = Z: , and also that the real positive cone over �, R≥0�, is pointed, meaning that
it is strongly convex.

Definition 2 A semigroup N� is normal if N� = R≥0� ∩ Z�. A semigroup N� is
scored if the difference (R≥0� ∩ Z�) ∖N� consists of a finite union of hyperplane
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sections of R≥0� ∩ Z� that are all parallel to facets of the cone R≥0�. An affine
semigroup ring C[N�] is said to be normal, or scored, if N� is normal, or scored,
respectively. Note that normal semigroups are scored.

When we write a facet f of R≥0� (or � or N�), we will always mean the integer
points in the corresponding facet of R≥0�. When � is normal, this is the same as the
semigroup generated by the columns of � that lie in the corresponding facet of R≥0�.

Throughout, we use ⟨−⟩ to indicate ideals in the commutative rings '� or the
polynomial ring C[\] = C[\1, . . . , \:]. It will be clear from the context if the ideals
are in '� or in C[\].

Notice that the Z: -graded prime ideals in R� are in one-to-one correspondence
with the faces of � (or R≥0�), as a face g of � corresponds to the multigraded prime
'�-ideal

%g ∶= ⟨td ∣ d ∈ N� ∖ g⟩ .
In this paper, we compute rings of the form I(�)/�('�, �), where � is a radical
monomial ideal in '�; as such, � is always as intersection of primes of the form %g ,
for various faces g of �.

We are mainly following the description of Saito and Traves [ST01], although
Musson and Van den Bergh describe the ring of differential operators of a toric
ring C[N�] first in [Mus87], [Mus94] and [MVdB98] when viewed as a subring
of the ring of differential operators of the Laurent polynomials, i.e., �(C[Z:]) =
C{C±1

1 , . . . , C±1
: , m1, . . . , m:}/ ∼, where m8 denotes the differential operator m

mC8
and ∼

denotes the usual relations on the free associative algebra C{C±1
1 , . . . , C±1

: , m1, . . . , m:}
that describe the behavior of differential operators. To explain the differential
operators of C[N�] as presented by Saito and Traves, note first that �(C[Z:])
carries a Z: -grading, where 48 denotes the 8-th column of the identity matrix � and
deg(C8) = 48 = −deg(m8). Note also that if a8 is a column of �, then deg(ta8) = a8 .
Set \ 9 = C 9m 9 for 1 ≤ 9 ≤ : , and set

Ω(d) ∶= {a ∈ N� ∣ a + d ∉ N�} = N� ∖ (−d +N�).

We note also that for any tm ∈ '� and 5 (\) ∈ C[\], 5 (\) ∗ tm = 5 (m)tm. The
idealizer of Ω(d) is defined to be

I(Ω(d)) ∶= ⟨ 5 (\) ∈ C[\] = C[\1, \2 . . . , \:] ∣ 5 (a) = 0 for all a ∈ Ω(d)⟩,

which is viewed as an ideal in the ring C[\], where \8 = C8m8 ∈ �(C[Z3]) is of degree
0. We will soon see that I(Ω(d)) consists of 5 (\) such that td 5 (\) ∈ �('�).

To compute I(Ω(d)) for a normal semigroup ring, consider a facet f of �,
recalling that by this we mean all lattice points on the corresponding facet of the cone
R≥0�. The primitive integral support function ℎf is a uniquely determined linear
form on R: such that:

1. ℎf(R≥0�) ≥ 0,
2. ℎf(Rf) = 0, and
3. ℎf(Z:) = Z.
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We write f1, f2, . . . , f< for the facets of �, so that for the remainder of the paper,
we set

ℎ 9 ∶= ℎ 9(\) = ℎf 9 (\).
For a non-negative integer =, we will use the following notation to denote this

descending factorial:

(U, =)! ∶=
=

∏
8=0

(U − 8) = U(U − 1)⋯(U − =),

where U is a function, which could be constant or already evaluated. For example,

(ℎ 9 , ℎ 9(−d) − 1))! =
ℎ 9(−d)−1

∏
8=0

(ℎ 9 − 8)

will be a common expression throughout this article, as it is a factor in the generator
of the idealizer I(Ω(d)). To streamline our presentation, we make the convention
that (U, =)! = 1 for all = < 0.

Theorem 1 [ST01, Theorem 3.2.2] If '� is a pointed, normal affine semigroup ring
with Z� = Z: , then

�('�) = ⊕
d∈Z3

td ⋅ I(Ω(d)),

= ⊕
d∈Z3

td ⋅ ⟨ ∏
ℎ8(d)<0

(ℎ8 , ℎ8(−d) − 1)!⟩ , (3)

where the outer product runs over those 9 = 1, 2, . . . , < with ℎ 9(d) < 0.

We now turn to an example that illustrates Theorem 1, as well as our notation.

Example 1 Let ' = C[B, BC, BC2, BC3], where deg(B) = 1 = deg(C). Let m1 and m2
denote the partial derivatives with respect to B and C, and let \1 = Bm1 and \2 = Cm2.
By Theorem 1, �(')d , for some d = (31, 32) ∈ Z2, is generated by an element in the
form of B31 C32 ⋅ 5 (\1, \2), where 5 (\1, \2) is a polynomial in \1 and \2.

To understand the philosophy from [ST01], fix d = (31, 32) ∈ Z2, and consider
a differential operator on ' = :[B, BC, BC2, BC3] of the form X = B31 C32 5 (\1, \2). By
definition, X ∗ (B<1 C<2) ∈ ' for any monomial B<1 C<2 ∈ '. We can check that

X ∗ B<1 C<2 = 5 (m)B31+<1 C32+<2 .

In particular, if B31+<1 C32+<2 ∉ ' then we must have that X ∗ B<1 C<2 = 0 so that
5 (m) = 0. In summary, X ∗ (B<1 C<2)may be nonzero if and only if B31+<1 C32+<2 ∈ '.

These multidegrees m = (<1, <2)where X∗ B<1 C<2 vanishes are exactly the points
in Ω(d). We illustrate examples of Ω(d) for specific d in Figure 1 by the integral
points that are on the dotted lines in the first quadrant, including those on the positive
horizontal axis.
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To explicitly compute the polynomial 5 = 5 (\1, \2) for a fixed d ∈ Z2, we will use
the primitive integral support functions for the two facets of �, which are ℎ1 = \2
and ℎ2 = 3\1 − \2. Both of these must divide 5 , along with all of the linear forms
representing the dotted lines in Figure 1. Specifically, I(Ω(−1, 2)) is generated by

5 (\1, \2) = ℎ2(ℎ2 − 1)(ℎ2 − 2)(ℎ2 − 3)(ℎ2 − 4) = (ℎ2, 4)!,

and I(Ω(−2,−1)) is generated by

5 (\1, \2) = ℎ1ℎ2(ℎ2 − 1)(ℎ2 − 2)(ℎ2 − 3)(ℎ2 − 4) = (ℎ1, 0)!(ℎ2, 4)!.

For d = (−1, 2), we have ℎ2(−d) = 5 while ℎ1(−d) = −2 < 0, so there are no
linear forms involving ℎ1 in this generator. Similarly for d = (−2,−1), ℎ1(−d) = 1,
ℎ2(−d) = 5. In particular, (ℎ1, ℎ1(−d)− 1)! = (ℎ1, 0)! = ℎ1 and (ℎ2, ℎ2(−d)− 1)! =
(ℎ2, 4)! = (ℎ2 − 4)(ℎ2 − 3)(ℎ2 − 2)(ℎ2 − 1)ℎ2.

As shown in Example 1, I(Ω(d)) is an ideal in C[\], and any polynomial
5 (\) ∈ C[\] has multidegree 0; for any monomial tm ∈ '�, 5 (\) ∗ tm = 5 (m)tm,
which belongs to '�. So to determine if the d-th graded piece of �('�) applied
to a monomial lands in '� or an '�-ideal �, it is enough to test the membership
of any monomial td+m and then adjust the \-portion of the differential operator
appropriately. Membership failure for '� only occurs if m lies in N� but outside of
the cone −d + R≥0�, whereas for � ≠ '�, failure is more likely to occur. Since the
monomials whose exponents lie on a face of −d +R≥0� will lie on the corresponding
face g of �, if an associated prime of � is a prime ideal associated to a face that
contains g, then membership failure will also occur for m on this face. In either case,
there are only finitely many potential linear forms to be determined, and they are of
the form ℎf(\) − ℎf(−d) where ℎf is the primary support function of a facet f.

d

−d

d

−d

Fig. 1: Half-lines of vanishing for various d; here, d = (−1, 2) and (−2,−1).
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In [Eri98, Tra99, Tri97], Eriksson, Traves, and Tripp separately computed the
ring of differential operators of a Stanley–Reisner ring over an arbitrary field, i.e.,
the quotient of any polynomial ring over a field by a squarefree monomial ideal.
We include here the ring of differential operators of an ordinary double point
' = C[G, H]/⟨GH⟩ using the viewpoint presented by the above authors, as it exhibits
behavior akin to our computations in this article. In [Mus89], Musson also considered
the differential operators on an ordinary double point.

Example 2 The ring of differential operators on C[G, H] is the Weyl algebra , =
C{G, H, mG , mH}, which is the free associative algebra generated by G, H, mG , mH , subject
to the relations:

{GH − HG, mGmH − mHmG , mGH − HmG , mHG − GmH , mGG − GmG + 1, mHH − HmH + 1}.

The Weyl algebra , is a graded ring with deg(G) = deg(H) = 1 = −deg(mG) =
−deg(mH).

For the ordinary double point ring ' = C[G, H]/⟨GH⟩, Traves shows in [Tra99,
Theorem 3.5] that the idealizer of ⟨GH⟩ in, is also graded and generated by

{1, G<, H=, G<H=, G<m8G , H
=m 9H , G

<H=m8Gm
9
H ∣ 8 ≥ < > 0, 9 ≥ = > 0}.

Notice in particular that G<m<G and H=m=H both have degree 0. Setting \G = GmG and
\H = HmH , from the Weyl algebra relations, it follows that

m8G = G−8 ⋅
8−1
∏
ℓ=0

(\G − ℓ) = G−8 (\G , 8 − 1)! and m 9H = H− 9 ⋅
9−1
∏
ℓ=0

(\H − ℓ) = (\H , 9 − 1)!.

Hence G<m8G = G<−8 ⋅ (\G , 8 − 1)! and H=m 9H = H=− 9 ⋅ (\H , 9 − 1)!, and G<H=m8Gm
9
H has

multidegree (< − 8, = − 9) in, . In fact,

, = ⊕
(<,=)∈Z2

G<H= ⋅ ⟨(\G , < − 1)! (\H , = − 1)!⟩,

which is a presentation of the Weyl algebra using the Saito–Traves approach from
Theorem 1. From this viewpoint, Traves showed that

I(⟨GH⟩)(<,=) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G<H= ⋅C[\G , \H] if <, = ≥ 0,
G<H= ⋅ ⟨(\G ,−<)!⟩ if < < 0, = ≥ 0,
G<H= ⋅ ⟨(\H ,−=)!⟩ if = < 0, < ≥ 0,
G<H= ⋅ ⟨(\G ,−<)! (\H ,−=)!⟩ if <, = < 0.

Further, ⟨GH⟩, can be expressed as a multigraded,-ideal that is contained in I(⟨GH⟩)
as follows:



8 Berkesch, Chan, Klein, Matusevich, Page, and Vassilev

⟨GH⟩,(<,=) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G<H= ⋅C[\G , \H] if <, = > 0,
G<H= ⋅ ⟨(\G ,−<)!⟩ if < ≤ 0, = > 0,
G<H= ⋅ ⟨(\H ,−=)!⟩ if = ≤ 0, < > 0,
G<H= ⋅ ⟨(\G ,−<)! (\H ,−=)!⟩ if <, = ≤ 0.

Now, applying Proposition 1 yields a computation for the ring of differential operators
for the ordinary double point ' = C[G, H]/⟨GH⟩:

� (C[G, H]⟨GH⟩ )
(<,=)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if <= ≠ 0,
C[\G , \H]
⟨\G\H⟩

if < = = = 0,

G< ⋅ ⟨(\G ,−<)!⟩
⟨(\G ,−<)!\H⟩

if < ≠ 0, = = 0,

H= ⋅
⟨(\H ,−=)!⟩

⟨(\H ,−<)!\G⟩
if = ≠ 0, < = 0.

(4)

We next fix some notation to be used in the remainder of this paper. Whenever the
dimension of the semigroup ring under consideration is : = 2, instead of using C1, C2
as our variables, we will use B, C. Further, when considering subsets of R2 and R3 that
contain the lattice points that describe a set of monomials in our semigroup, such as
lines or planes, we will describe them with the variables G, H, and I, for example, the
line H = 2G − 1 in R2 or the plane G − I = 2 in R3.

Consider the matrix
�= = [1 1 1 ⋯ 1

0 1 2 ⋯ =
] .

We call '�= = C[N�=] = C[B, BC, BC2, . . . BC=] the ring of the rational normal curve
of degree =, since it is the coordinate ring of the affine cone of the projective rational
normal curve. This ring will be the subject of the next three sections. The two facets
of �= are

f1 = N [1
0] = {(G, H) ∈ N2 ∣ G ≥ 0, H = 0} and

f2 = N [1
=
] = {(G, H) ∈ N2 ∣ G ≥ 0, H = =G}.

The prime ideal associated to f1 is %1 = ⟨BC, BC2, . . . , BC=⟩, and the prime ideal
associated to f2 is %2 = ⟨B, BC, . . . , BC=−1⟩. We will consider the radical ideal

� = %1 ∩ %2 =
⎧⎪⎪⎨⎪⎪⎩

⟨BC, BC2, . . . , BC=−1⟩ if = > 1,
⟨B2C⟩ if = = 1.
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Observe that '�=/� ≅ C[G, H]/⟨GH⟩ for all = > 0. At the end of Section 5, we revisit
Example 2 and present a C-algebra isomorphism between �(C[G, H]/⟨GH⟩) and
�('�=/�) and compare it to our calculations for I(�)/�('�= , �).

3 Differential operators on the rational normal curve of degree 2

In this section, we compute the idealizer, I(�), along with the subset of differential
operators �('�2 , �) for the ideals � = %1 = ⟨BC, BC2⟩ and � = � = ⟨BC⟩ over the ring of
the rational normal curve of degree 2, '�2 = C[B, BC, BC2]. To aid our computations
we include illustrations of the lattice representing the multidegrees in the plane
broken down into four chambers where the operators will be determined by similar
expressions. The facets of �2 are

f1 = {(G, H) ∈ N2 ∣ G ≥ 0, H = 0} and f2 = {(G, H) ∈ N2 ∣ G, H ≥ 0, H = 2G},

which have primitive integral support functions

ℎ1 = \2 and ℎ2 = 2\1 − \2.

Fig. 2
Chambers of �('�2)

Figure 2 illustrates the integer lattice, divided into four
chambers that are colored as follows:

C1: The red multidegrees correspond to monomials in
�, the gray multidegrees correspond to monomials
in %1 ∖ � and the blue multidegrees correspond to
monomials in '�2 ∖ %1,

C2: The yellow multidegrees are the d with ℎ1(d) ≥ 0
and ℎ2(d) < 0,

C3:The violetmultidegrees are the dwith both ℎ1(d) <
0 and ℎ2(d) < 0, and

C4: The green multidegrees are the d with ℎ1(d) < 0
and ℎ2(d) ≥ 0.

Still following the convention (ℎ, =)! = 1 if = < 0, by Theorem 1, the graded pieces
of �('�2) are

�('�2)d = B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d) − 1)! (ℎ2, ℎ2(−d) − 1)!⟩ .

Broken down by chambers, this amounts to:

�('�2)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ C1,
B31 C32 ⋅ ⟨(ℎ2,−231 + 32 − 1)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32 − 1)! (ℎ2,−231 + 32 − 1)!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨(ℎ1,−32 − 1)!⟩ if d ∈ C4.
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Example 3 We first compute the graded pieces of the sets of differential operators
I(%1) and �('�2 , %1). Later, since C[G] ≅ '�2/%1, we will exhibit a C-algebra
isomorphism between �(C[G]) and �('�2/%1).

To begin, recall that

I(%1) = {X ∈ �('�2) ∣ X∗%1 ⊆ %1} and �('�2 , %1) = {X ∈ �('�2) ∣ X∗' ⊆ %1}.

Now if d ∈ C1 and B<1 C<2 ∈ %1 or if d ∈ C1 ∖ f1 and B<1 C<2 ∈ '�2 , then for any
6(\) ∈ C[\],

B31 C32 ⋅ 6(\) ∗ B<1 C<2 = 6(m)B31+<1 C32+<2 ∈ %1, so

I(%1)d = �('�2)d for all d ∈ C1 and �('�2 , %1)d = �('�2)d for all d ∈ C1 ∖ f1.

(a) Lines parallel
to f2.

(b) Lines parallel
to f1.

Fig. 3: Lines parallel to the facets.

With the aid of Figure 3, we will explain how to determine I(%1) and �('�2 , %1)
in the other chambers. The red lattice points in Figure 3, indicate the monomials in
%1.

First, note that if d ∈ C2 and B<1 C<2 ∈ %1 or d ∈ C2 ∖ (−f1) and B<1 C<2 ∈
'�2 , and m lies on one of the lines H = 2G − A shown in Figure 3a, then
B31 C32 (ℎ2,−231 + 32 − 1)!, the generator of �('�2)d , applied to such a mono-
mial will either be a constant times a monomial represented by a red lattice point
on one of the lines H = 2G − 9 for 0 ≤ 9 ≤ A or, when (ℎ2(m),−231 + 32 − 1)! = 0, it
will be 0. Hence,

I(%1)d = �('�2)d for d ∈ C2 and �(', %1)d = �('�2)d for d ∈ C2 ∖ (−f1).

Now if d ∈ C4 and B<1 C<2 ∈ %1 or d ∈ C4 ∪ f1 and B<1 C<2 ∈ '�2 and m lies on
one of the lines H = A shown in Figure 3b, then B31 C32 (ℎ1,−32 − 1)!, the generator of
�('�2)d , applied to such a monomial will either be a constant times a monomial
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represented by a red lattice point on one of the lines H = 9 for 0 ≤ 9 ≤ A or, when
(ℎ1(m),−231 + 32 − 1)! = 0, it will be 0. However, the monomials represented by
the lattice points on H = 0 do not lie in %1. The monomials represented by the red
lattice points on the line H = −32 are precisely the monomials whose image is a term
represented by a lattice point on f1. Hence, we need to further right-multiply any
operator in �('�2)d by \2 + 32, so that

I(%1)d = B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ for d ∈ C4 and

�('�2 , %1) = B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ for d ∈ C4 ∪ f1.

Using similar reasoning, we can easily see that

I(%1)d = B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32 − 1)!⟩ for d ∈ C3 and

�('�2 , %1)d = B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32 − 1)!⟩ for d ∈ C3 ∪ (−f1).

Putting these all together, the graded pieces of I(%1) and �('�2 , %1) are as
follows:

I(%1)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ C1 = N�2,

B31 C32 ⋅ ⟨(ℎ2,−231 + 32 − 1)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32 − 1)!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4,

�('�2 , %1)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ %1,

B31 C32 ⋅ ⟨(ℎ2,−231 + 32 − 1)!⟩ if d ∈ C2 ∖ (−f1),
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32 − 1)!⟩ if d ∈ C3 ∪ (−f1),
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4 ∪ f1.

Now taking the quotient, we obtain:

( I(%1)
�('�2 , %1)

)
d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ Zf1,

B31 ⋅ C[\]⟨ℎ1⟩
if d ∈ f1,

B31 ⋅ ⟨(ℎ2,−231 − 1)!⟩
⟨ℎ1 (ℎ2,−231 − 1)!⟩ if d ∈ (−f1 ∖ 0).

Viewing �(C[G]) as a Z-graded algebra over C[\G], we note that

�(C[G]) =
∞
∑
3=1

m3G ⋅C[\G]⊕
∞
∑
3=0

G3C[\G] = ∑
3∈Z

G3 (\G ,−3 − 1)! ⋅C[\G].

The map

q∶∑
3∈Z

G3 ⋅ (\G ,−3 − 1)! ⋅C[\G]→ ∑
3∈Z

B3 ⋅ ⟨(ℎ2,−23 − 1)!⟩
⟨ℎ1 (ℎ2,−23 − 1)!⟩ ,
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which is defined on the generators by

q(G3 (\G ,−3 − 1)!) = B3 (ℎ2,−23 − 1)! + ⟨ℎ1 (ℎ2,−23 − 1)!⟩,

although a C-vector space isomorphism, does not produce a ring isomorphism. The
graded pieces in negative degree are generated by polynomials in \ whose degrees
are twice as large as large as the degrees in \G given in the Weyl algebra. In fact,

�('�2/%1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ Zf1,

B31 ⋅ C[\]

⟨ ℎ1

2
⟩

if d ∈ f1,

B31 ⋅
⟨( ℎ2

2
,−31 − 1)!⟩

⟨ ℎ1

2
( ℎ2

2
,−31 − 1)!⟩

if d ∈ (−f1 ∖ 0).

Therefore, we can produce an isomorphism of graded rings k∶�(C[G]) →
�('�2/%1) defined for any < ∈ N by

k(G<) = B<, and k(m<G ) = B−< ⋅ ( ℎ2

2
, < − 1)! + ⟨ ℎ1

2
( ℎ2

2
, < − 1)!⟩ .

Example 4 Wewill now compute the graded pieces of the sets of differential operators
I(�) and �('�2 , �), as well as the graded pieces of ��('�2). Recall that

I(�) = {X ∈ �('�2) ∣ X ∗ � ⊆ �} and �('�2 , �) = {X ∈ �('�2) ∣ X ∗ ' ⊆ �}.

Fig. 4
Vanishing

for d = (−1, 0)

We will soon give a general formula for the graded
pieces of I(�) and �('�2 , �); however, for illustrative
purposes, first consider the graded piece of �('�2)
at (−1, 0): B−1 ⋅ ⟨(ℎ2, 1)!⟩. Applying B−1 ⋅ (ℎ2, 1)! to
a monomial whose exponent lies in the two parallel
half-lines f2 and H = 2G − 1 in N� will yield 0, which
certainly lives inside �. However, when we let B−1 ⋅
(ℎ2, 1)! act on amonomial whose exponent is amember
of the half-lines H = 2G − 2 or H = 0 lying inside N�2,
we obtain an integer multiple of a monomial whose
exponent lies in one of the facets of �2, f2 or f1
respectively, and these are not in �. The remaining
monomials in � yield another element of � when they
are acted upon by any operator in B−1 ⋅ ⟨(ℎ2, 1)!⟩ .

In Figure 4, the two light blue lines indicate the two
half-lines representing the multidegrees of monomials in '�2 that, after application
of an element in �('�2)(−1,0), fails to yield an element in �. To correct for this lack
of membership in � for the monomials on H = 2G − 2, every element of �('�2)(−1,0)
should be multiplied by (ℎ2 − 2); applying B−1 ⋅ (ℎ2, 2)! to these monomials yields 0.
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The application of B−1 ⋅ (ℎ2, 2)! to the remaining monomials in � will output a term
inside �. Thus,

I(�)(−1,0) = B−1 ⋅ ⟨(ℎ2, 2)!⟩.
Similarly, for every operator X ∈ �('�2)(−1,0), X(ℎ2 − 2)ℎ1 ∗ B<1 C<2 = 0 for every
m on H = 2G − 2 or in f1. Also, X(ℎ2 − 2)ℎ1 ∗ B<1 C<2 ∈ � for all other m in N�, so

�('�2 , �)(−1,0) = B−1 ⋅ ⟨ℎ1 (ℎ2, 2)!⟩.

In fact, using a similar argument applied to any d ∈ C2 in the case of I(�)d and
d ∈ C2 ∖ (−f1) for �('�2 , �)d , applying an operator in �('�2)d to a monomial
with exponent on the half-lines H = 2G − 9 for 0 ≤ 9 < ℎ2(−d) will give 0; whereas,
these operators applied to a monomial with multidegrees on H = 2G + ℎ2(d) yields
a constant multiple of a monomial with exponent in f2. Hence, right-multiplying
B31 C32 ⋅ (ℎ2, ℎ2(−d) − 1)! by ℎ2 + ℎ2(d) produces an operator that, when applied to
monomials with multidegrees on the lines H = 2G + ℎ2(d), becomes 0, and

I(�)d = B31 C32 ⋅ ⟨(ℎ2,−231 + 32)!⟩ for all d ∈ C2, and

�('�2 , �)d = B31 C32 ⋅ ⟨(ℎ2,−231 + 32)!⟩ for all d ∈ C2 ∖ (−f1).

We will discuss the multidegrees d ∈ C2 ∩ (−f1) momentarily, when we turn to C3.

Fig. 5
Vanishing

for d = (−1, −2)

Determining the graded piece of multidegree d
for both I(�) in C4 and �('�2 , �) in C4 ∖ (−f2) is
quite similar to the arguments we used to determine
I(�)d for d in C2 and �('�2 , �)d for d in C2∖ (f1),
respectively. We will briefly describe I(�)(−1,−2) and
�('�2 , �)(−1,−2) with the aid of Figure 5 and then
immediately describe the general case. Recall that
�('�2)(−1,−2) = B−1C−2 ⋅ ⟨(ℎ1, 1)!⟩. Similar to the
argument for degree d = (−1, 0) above, themonomials
corresponding to the multidegrees which lie on the
two light blue lines (H = 2 and f2) in Figure 5 are the
only exponents of monomials that fail to land inside
� after the application of B−1C−2 ⋅ (ℎ1, 1)!.

To correct this deficiency, right-multiply by (ℎ1−2)
for I(�)(−1,−2) and (ℎ1 − 2)ℎ2 for �('�2 , �)(−1,−2).

Notice that applying the operator B−1C−2 ⋅ (ℎ1, 2)! to a monomial corresponding to
d ∈ N�2 along the half-lines H = 2 or the operator B−1C−2 ⋅ (ℎ1, 2)!ℎ2 to a monomial
corresponding to d ∈ N�2 along H = 2 or H = 2G now yields 0, and no problems are
created for the remaining monomials in � or '�2 , respectively. Thus,

I(�)(−1,−2) = B−1C−2 ⋅ ⟨(ℎ1, 2)!⟩ and �('�2 , �)(−1,−2) = B−1C−2 ⋅ ⟨(ℎ1, 2)!ℎ2⟩.

In fact,
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I(�)d = B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ for all d ∈ C4, and

�('�2 , �)d = B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ for all d ∈ C4 ∖ (−f2).

We will return to �('�2 , �)d for d ∈ C4 ∩ (−f2) when we turn to C3.

Fig. 6
Vanishing

for d = (−1, −1)

Determining I(�)d for d ∈ C3 or �('�2 , �)d
for d ∈ C3 ∪ (−f1) ∪ (−f2) again is akin to the
arguments we gave above for �('�2 , �)(−1,0) and
�('�2 , �)(−1,−2). With the aid of Figure 6, we will
briefly describe

I(�)(−1,−1) and �('�2 , �)(−1,−1).

This explanation can easily be extended from d =
(−1,−1) to all multidegrees d in C3 (or in C3 ∪
(−f1) ∪ (−f2) in the case of �('�2 , �)). If the
operator B−1C−1 ⋅ ℎ1ℎ2, which is the generator for
�('�2)(−1,−1), is applied to any of the monomials
corresponding to multidegree d ∈ N�2 along the two
light blue half-lines in Figure 6 (the portion of H = 1
or H = 2G − 1 in C1), we obtain an integer multiple of

a monomial with exponent in the facets f1 or f2, respectively, which is not in �, and
no problems are created for the remaining monomials in � (or '�2 for �('�2 , �)).

Hence, right-multiplying by (ℎ1 − 1)(ℎ2 − 1) yields a new operator B−1C−1 ⋅
(ℎ1, 1)! (ℎ2, 1)! that will send to 0 all monomials with multidegrees d ∈ N�2 along
the half-lines H = 2G − 1 and H = 1. No problems are created for the remaining
monomials in '�2 and we obtain

I(�)(−1,−1) = �('�2 , �)(−1,−1) = B−1C−1 ⋅ ⟨(ℎ1, 1)! (ℎ2, 1)!⟩.

In fact,

I(�)d = �('�2 , �)d = B31 C32 ⋅ ⟨(ℎ1,−32))! (ℎ2,−231 + 32)!⟩ for all d ∈ C3,

and

�('�2 , �)d = B31 C32 ⋅ ⟨(ℎ1,−32))! (ℎ2,−231 + 32)!⟩ for all d ∈ (−f1) ∪ (−f2).

Hence, the graded pieces of I(�) and �('�2 , �) are as follows:

I(�)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ C1 = N�2,

B31 C32 ⋅ ⟨(ℎ2,−231 + 32)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32)!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4,
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�('�2 , �)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ2,−231 + 32)!⟩ if d ∈ (C2 ∖ (−f1)) ∪ (f2 ∖ {0}),
B31 C32 ⋅
⟨(ℎ1,−32)! (ℎ2,−231 + 32)!⟩ if d ∈ C3 ∪ (−f1) ∪ (−f2),

B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ (C4 ∖ (−f2)) ∪ (f1 ∖ {0}).
Now taking the quotient, we obtain:

( I(�)
�('�2 , �)

)
d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ (Zf1 ∪ Zf2),

B31 C32 ⋅ C[\]⟨ℎ1ℎ2⟩
if d = 0,

B31 C32 ⋅ C[\]⟨ℎ1⟩
if d ∈ f1 ∖ {0},

B31 C32 ⋅ C[\]⟨ℎ2⟩
if d ∈ f2 ∖ {0},

B31 C32 ⋅ ⟨(ℎ2,−231)!⟩
⟨ℎ1 (ℎ2,−231)!⟩

if d ∈ (−f1),

B31 C32 ⋅ ⟨(ℎ1,−32)!⟩
⟨ℎ2 (ℎ1,−32)!⟩

if d ∈ (−f2).

As both � and �('�2) are graded, we can similarly determine ��('�2). Our
goal for the remainder of the section is to compute the graded pieces of ��('�2), in
order to observe that, in this case, �('�2 , �) = ��('�2).

To begin, note that for all B31 C32 ∈ Z2,

�('�2)(31−1,32−1) = B31−1C32−1 ⋅ ⟨(ℎ1,−32)! (ℎ2,−231 + 32)!⟩.

For B<1 C<2 ∈ � the graded piece at the multidegree (31 −<1, 32 −<2) will be

B31−<1 C32−<2 ⋅ ⟨(ℎ1,−(32 −<2) − 1)! (ℎ2,−2(31 −<1) + 32 −<2 − 1)!⟩.

Note that since <1 and <2 are both positive,

B<1 C<2 B31−<1 C32−<2 = B31 C32 ,

and
⟨(ℎ1,−(32 − 22) − 1)! (ℎ2,−2(31 − 21) + 32 − 22 − 1)!⟩

is contained in ⟨(ℎ1,−32)! (ℎ2,−231 + 32)!⟩. Thus, to determine (��('�2))d for
any d ∈ Z2, it is enough to (left) multiply �('�2)(31−1,32−1) by BC. Hence, from our
previous computation, it follows that
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(��('�2))d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ2,−231 + 32)!⟩ if d ∈ (C2 ∖ (−f1)) ∪ (f1 ∖ {0}),
B31 C32 ⋅ ⟨(ℎ1,−32)!⋅

(ℎ2,−231 + 32)!⟩ if d ∈ C3 ∪ (−f1) ∪ (−f2),
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ (C4 ∖ (−f2)) ∪ (f1 ∖ {0}).

Combining all cases together, it follows that for an arbitrary d ∈ Z2, there is an
equality

(��('�2))d = B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ2, ℎ2(−d))!⟩ = �('�2 , �)d .

4 Differential operators on the rational normal curve of degree 3

In this section, we determine some subsets of the ring of differential operators for the
ring of the rational normal curve of degree 3 determined by its interior ideal �. We
contrast these computations with the degree 2 case that was determined in Section 3.
Although the description follows the same reasoning as the degree 2 setting, we
ultimately get quite different behavior for the operators that end up in ��('�3).

The ring of the rational normal curve of degree 3 is '�3 = C[B, BC, BC2, BC3], and
we will compute I(�)/�('�3 , �), where � = ⟨BC, BC2⟩ is a radical ideal. The facets of
�3 are

f1 = {(G, H) ∈ N2 ∣ G ≥ 0, H = 0} and f2 = {(G, H) ∈ N2 ∣ G, H ≥ 0, H = 3G},

Fig. 7
Chambers of �('�3)

which have primitive integral support functions

ℎ1 = \2 and ℎ2 = 3\1 − \2.

Figure 7 illustrates the integer lattice, divided into four
chambers that are colored as follows:

C1: The red multidegrees correspond to monomials
in �, and the blue multidegrees correspond to mono-
mials in '�2 ∖ �,

C2: The yellowmultidegrees are the d with ℎ1(d) ≥ 0
and ℎ2(d) < 0,

C3: The violet multidegrees are the d with both
ℎ1(d) < 0 and ℎ2(d) < 0, and

C4: The green multidegrees are the d with ℎ1(d) < 0
and ℎ2(d) ≥ 0.

Still following the convention (ℎ, =)! = 1 if = < 0,
by Theorem 1, the graded pieces of �('�3) are
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�('�3)d = B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d) − 1)! (ℎ2, ℎ2(−d) − 1)!⟩ .

Broken down by chambers, this amounts to:

�('�3)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ C1,
B31 C32 ⋅ ⟨(ℎ2,−331 + 32 − 1)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32 − 1)! (ℎ2,−331 + 32 − 1)!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨(ℎ1,−32 − 1)!⟩ if d ∈ C4.

Determining the graded pieces of I(�) and �('�3 , �) in �('�3) is very similar
to our computations in Section 3. Here we include some visualizations for d ∈
{(−1, 0), (−1,−3), (−1,−1), (−1,−2)} in Figure 8 to aid our in our description of
how to obtain I(�)d and �('�3 , �)d . Then, we will list the expressions for I(�)d and
�('�3 , �)d by chamber, as we did in Section 3.

(a) d = (−1, 0). (b) d = (−1, −3).

(c) d = (−1, −1). (d) d = (−1, −2).

Fig. 8: Vanishing at various d

For each d in the illustrations in Figure 8, when we apply elements of �('�3)d
to any of the monomials represented by lattice points along the light blue lines, we
obtain an integer multiple of a monomial whose exponent lies on a facet. As in Section
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3, these lines determine the linear multiples ℎ8 − ℎ8(d) we must append to I(Ω(d))
to obtain either I(�)d or �('�3 , �). Note that the light blue lines ℎ8(x) − ℎ8(d) = 0
that have contain a red dot determine the ℎ8 − ℎ8(d) we right-multiply by to obtain
I(�)d and that the light blue lines ℎ8(x)− ℎ8(d) = 0 that have non-empty intersection
with the the entire cone determine the ℎ8 − ℎ8(d) we right-multiply by to obtain
�('�3 , �)d . Below we summarize the graded pieces of I(�) and �('�3 , �), as we
did in Section 3:

I(�)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ N�3,

B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4,
B31 C32 ⋅ ⟨(ℎ2,−331 + 32)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−331 + 32)!⟩ if d ∈ C3,

�('�3 , �)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ (C4 ∖ (−f2)) ∪ (f1 ∖ {0}),
B31 C32 ⋅ ⟨(ℎ2,−331 + 32)!⟩ if d ∈ (C2 ∖ −f1) ∪ (f2 ∖ {0}),
B31 C32 ⋅ ⟨(ℎ1,−32)!⋅

(ℎ2,−331 + 32)!⟩ if d ∈ C3 ∪ (−f1) ∪ (−f2).
(5)

Taking the quotient, we obtain:

( I(�)
�('�3 , �)

)
d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ (Zf1 ∪ Zf2),

B31 C32 ⋅ C[\]⟨ℎ1ℎ2⟩
if d = 0,

B31 C32 ⋅ C[\]⟨ℎ1⟩
if d ∈ (f1 ∖ {0}),

B31 C32 ⋅ C[\]⟨ℎ2⟩
if d ∈ (f2 ∖ {0}),

B31 C32 ⋅ ⟨(ℎ2,−331)!⟩
⟨ℎ1 (ℎ2,−331)!⟩

if d ∈ (−f1 ∖ {0}),

B31 C32 ⋅ ⟨(ℎ1,−32)!⟩
⟨ℎ2 (ℎ1,−32)!⟩

if d ∈ (−f2 ∖ {0}).

In the remainder of the section, we compute the graded pieces of ��('�3) to
show that they are not equal to the graded pieces of �('�3 , �). This means that
Proposition 1 does not hold for this ring. To begin the computation, if B<1 C<2 ∈ �,
then

�('�3)(31−<1 ,32−<2)
= B31−<1 C32−<2 ⋅ ⟨(ℎ1,−(32 −<2) − 1)! (ℎ2,−3(31 −<1) + 32 −<2 − 1)!⟩.

Further, since<1, <2 ≥ 1, B<1 C<2 B31−<1 C32−<2 = B31 C32 , and there is a containment
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(a) (��('�3))d
for td ∈ � .

(b) (��('�3))d
for d ∈ C2.

(c) (��('�3))d
for d ∈ C4.

(d) (��('�3))d
for d ∈ C3.

(e) (��('�3))d for d on
exceptional lines in C2 and C4

Fig. 9: Visualizing (��('�3))d .

⟨(ℎ1,−(32 −<2) − 1)! (ℎ2,−3(31 −<1) + 32 −<2 − 1)!⟩
⊆ ⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!, (ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩.

Thus, to determine the graded piece of (��('�3))d for any d ∈ Z2, it is enough to
consider �('�3) in multidegrees (31 − 1, 32 − 1) and (31 − 1, 32 − 2), where
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�('�3)(31−1,32−1) = B31−1C32−1 ⋅ ⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!⟩ and

�('�3)(31−1,32−2) = B31−1C32−2 ⋅ ⟨(ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩.

We will now break down this computation by chambers from Figure 7, leaving off
some half-lines along the way and addressing them as special cases later on. For C1,
Figure 9a helps to visualize that if B31 C32 ∈ �, then at least one of the two multidegrees
(31 − 1, 32 − 1) or (31 − 1, 32 − 2) lives in N�. Since �('�3)m = B<1 C<2 ⋅C[\] for
all m ∈ N�, (��('�3))d = B31 C32 ⋅ C[\] for B31 C32 ∈ �. We will consider the blue
multidegrees in C1 with their neighbors in C2 and C4.

Now consider the graded pieces of (��('�3))d for d in f2 or C2, excluding
the two half-lines in that chamber given by −f1 and H = 1. Since we excluded the
G-axis and H = 1, both (31 − 1, 32 − 1) and (31 − 1, 32 − 2) lie in C2 for all d under
consideration, see Figure 9b. Since

�('�3)(31−1,32−1) = B31−1C32−1 ⋅ ⟨(ℎ2,−331 + 32 + 1)!⟩ and

�('�3)(31−1,32−2) = B31−1C32−2 ⋅ ⟨(ℎ2,−331 + 32)!⟩,

and there is a containment ⟨(ℎ2,−331 + 32 + 1)!⟩ ⊆ ⟨(ℎ2,−331 + 32)!; ⟩, for such d,

(��('�3))d = B31 C32 ⋅ ⟨(ℎ2,−331 + 32)!⟩ .

Now consider (��('�3))d for d in f1 or in C4, excluding those multidegrees
that lie on −f2 or the half-line H = 3G − 1. Since we excluded the multidegrees on
−f2 and H = 3G − 1, both (31 − 1, 32 − 1) and (31 − 1, 32 − 2) also lie in C4, as seen
in Figure 9c. Since

�('�3)(31−1,32−1) = B31−1C32−1 ⋅ ⟨(ℎ1,−32)!⟩ and

�('�3)(31−1,32−2) = B31−1C32−2 ⋅ ⟨(ℎ1,−32 + 1)!⟩,

and there is a containment ⟨(ℎ1,−32 + 1)!⟩ ⊆ ⟨(ℎ1,−32)!⟩, it follows that for such d,

(��('�3))d = B31 C32 ⋅ ⟨(ℎ1,−32)!⟩.

For (��('�3))d for d in C3, −f1, or −f2, see Figure 9d,

�('�3)(31−1,32−1) = B31−1C32−1 ⋅ ⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!⟩,
�('�3)(31−1,32−2) = B31−1C32−2 ⋅ ⟨(ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩.

Since the ideals

⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!⟩ and ⟨(ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩

are incomparable, it follows that for such d,
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(��('�3))d
= B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!, (ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩.

The multidegrees d that we have not yet considered for (��('�3))d are those in
C2 along H = 1 and in C4 along H = 3G − 1. For such d, one of (31 − 1, 32 − 1) or
(31 − 1, 32 − 2) belongs to C3, see Figure 9e. First, for d in C2 along the line H = 1,
(31 − 1,−1) ∈ C3, and

�('�3)(31−1,−1) = B31−1C−1 ⋅ ⟨ℎ1 (ℎ2,−331 + 1)!⟩.

Combining the fact that �('�3)(31−1,0) = B31−1 ⋅ ⟨(ℎ2,−331 + 2)!⟩, we compute that

(��('�3))d = B31 C ⋅ ⟨(ℎ2,−331 + 2)!, ℎ1 (ℎ2,−331 + 1)!⟩.

Second, for d ∈ C4 along the line H = 3G − 1,

�('�3)(31−1,331−2) = B31−1C331−2 ⋅ ⟨(ℎ1,−331 + 1)!ℎ2⟩.

Connecting with the fact that

�('�3)(31−1,331−3) = B31−1C331−3 ⋅ ⟨(ℎ1,−331 + 2)!⟩,

we determine that

(��('�3))d = B31 C331−1 ⋅ ⟨(ℎ1,−331 + 1)!ℎ2, (ℎ1,−331 + 2)!⟩.

Having now computed ��('�3) in all multidegrees, we have that

(��('�3))d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ2,−331 + 32)!⟩ if d ∈ R2,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−331 + 32 + 1)!,

(ℎ1,−32 + 1)! (ℎ2,−331 + 32)!⟩ if d ∈ R3,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ R4,

where

R2 = (C2 ∖ (f1 ∪ {H = 1})) ∪ (f2 ∖ {0}),
R3 = C3 ∪ (−f1 ∪ −f2) ∪ (N�3), and
R4 = (C4 ∖ (f2 ∪ {H = 3G − 1})) ∪ (f1 ∖ {0}).

Now compare this with �('�3 , �) from (5); it becomes clear that (��('�3))d ≠
�('�3 , �)d whenever d belongs to any of the following: −f1, −f2, C3, C2 along
the half-line {H = 1}, or C4 along the half-line {H = 3G − 1}. In particular,
I(�)/�('�3 , �) ≠ I(�)/��('�3), in contrast to Proposition 1.
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5 Differential operators on a rational normal curve

The techniques used in Sections 3 and 4 can also be applied to compute I(�)d ,
�('�= , �)d , (��('�=))d and (I(�)/�('�= , �))d , where the radical ideal � =
⟨BC, BC2, . . . , BC=−1⟩ is again the intersection of the primes defined by the facets of �=.
We denote the facets of �= by

f1 = {(G, H) ∈ N2 ∣ G ≥ 0, H = 0} and f2 = {(G, H) ∈ N2 ∣ G, H ≥ 0, H = 3G},

which have primitive integral support functions

ℎ1 = \2 and ℎ2 = 3\1 − \2.

Again, we divide Z2 into chambers, analogous to those used in Sections 3 and 4, so

C1 = {d ∈ Z2 ∣ d ∈ N�},
C2 = {d ∈ Z2 ∣ ℎ1(d) ≥ 0, ℎ2(d) < 0},
C3 = {d ∈ Z2 ∣ ℎ1(d) < 0, ℎ2(d) < 0}, and
C4 = {d ∈ Z2 ∣ ℎ1(d) < 0, ℎ2(d) ≥ 0}.

These computations yield the following formulas:

I(�)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if d ∈ N�=,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4,
B31 C32 ⋅ ⟨(ℎ2,−=31 + 32)!⟩ if d ∈ C2,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−=31 + 32)!⟩ if d ∈ C3,

�('�= , �)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4′,
B31 C32 ⋅ ⟨(ℎ2,−=31 + 32)!⟩ if d ∈ C2′,
B31 C32 ⋅ ⟨(ℎ1,−32)! (ℎ2,−=31 + 32)!⟩ if d ∈ C3′,

where

C2′ = (C2 ∖ (−f1)) ∪ (f2 ∖ {0}),
C3′ = C3 ∪ (−f1 ∪ −f2),
C4′ = (C4 ∖ (−f2)) ∪ (f1 ∖ {0});

(��('�=))d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �,
B31 C32 ⋅ ⟨(ℎ1,−32)!⟩ if d ∈ C4′′,
B31 C32 ⋅ ⟨(ℎ2,−=G + H)!⟩ if d ∈ C2′′,
B31 C32 ⋅ ⟨(ℎ1,−32 + 9)! ⋅
(ℎ2,−=31 + 32 + = − 2 − 9)!⟩=−2

9=0 if d in C3′′,

where
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C2′′ = C2 ∖
⎛
⎝
=−2
⋃
9=0

{H = 9}
⎞
⎠
,

C3′′ = C3 ∪
⎡⎢⎢⎢⎢⎣
C2 ∩

⎛
⎝
=−2
⋃
9=0

{H = 9}
⎞
⎠

⎤⎥⎥⎥⎥⎦
∪
⎡⎢⎢⎢⎢⎣
C4 ∩

⎛
⎝
=−2
⋃
9=0

{H = =G − 9}
⎞
⎠

⎤⎥⎥⎥⎥⎦
,

C4′′ = C4 ∖
⎛
⎝
=−2
⋃
9=0

{H = =G − 9}
⎞
⎠
.

Fig. 10
(��('�7))d and
�('�7 , �)d differ

at blue d

Recall from Section 4 that ��('�3) ≠ �('�3 , �);
we see that this is true for all rings of rational normal
curves '�= = C[B, BC, . . . , BC=] with = ≥ 3. Specifically,
comparing �('�= , �)d and (��('�=))d for various d ∈
Z2, the graded pieces differ whenever d belongs to f1, f2,
C3, the half-lines in C2 inside

{(G, H) ∈ R2 ∣ G < 0, H = 8, 0 ≤ 8 ≤ = − 2},

or the half-lines in C4 inside

{(G, H) ∈ R2 ∣ G < 0, H = =G − 8, 0 ≤ 8 ≤ = − 2}.

Figure 10 has these multidegrees d in blue for the case
= = 7.

As with the rational normal cones in degrees 2 and 3
from Sections 3 and 4, for d ∈ Z2,

( I(�)
�('�= , �)

)
d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∈ Z2 ∖ (Zf1 ∪ Zf2),
C[\]
⟨ℎ1ℎ2⟩

if d = 0,

B31 ⋅ ⟨(ℎ2,−=31)!⟩
⟨ℎ1 (ℎ2,−=31)!⟩

if d ∈ Zf1 ∖ {0},

B31 C32 ⋅ ⟨(ℎ1,−32)!⟩
⟨ℎ2 (ℎ1,−32)!⟩

if d ∈ Zf2 ∖ {0}.

(6)

Example 2 considered the ordinary double point C[G, H]/⟨GH⟩, which is iso-
morphic to '�=/� for all = ≥ 1. Comparing �(C[G, H]/⟨GH⟩))d from (4) and
(I(�)/�('�= , �))d from (6), we see that there is an isomorphism between the graded
components, viewed as C-vector spaces, given by i∶� (C[G, H]/⟨GH⟩)→ � ('�=/�)
with, for < ∈ Z,
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i (C[\G , \H]⟨\G\H⟩
) = C[\]⟨ℎ1ℎ2⟩

,

i (G< ⟨(\G ,−<)!⟩
⟨(\G ,−<)!\H⟩

) = B< ⋅ ⟨(ℎ2,−=<)!⟩
⟨(ℎ2,−=<)!ℎ1⟩

, and

i
⎛
⎝
H< ⋅

⟨(\H ,−<)!⟩
⟨(\H ,−<)!\G⟩

⎞
⎠
= B<C=< ⋅ ⟨(ℎ1,−=<)!⟩

⟨(ℎ1,−=<)!ℎ2⟩
.

However, this isomorphism is not an isomorphism of rings. Again as in Example 3,
the degree of the polynomial generator in \1 and \2 in multidegree d is = times the
degree of the polynomial generator of in \G and \H . In fact, noting that along Zf2,
32 = =31, we have

� ('�=/�)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∈ Z2 ∖ (Zf1 ∪ Zf2),
C[\]

⟨ ℎ1

=

ℎ2

=
⟩

if d = 0,

B31 ⋅
⟨( ℎ2

=
,−31)!⟩

⟨ ℎ1

=
( ℎ2

=
,−31)!⟩

if d ∈ Zf1 ∖ {0},

B31 C32 ⋅
⟨( ℎ1

=
,−31)!⟩

⟨ ℎ2

=
( ℎ1

=
,−31)!⟩

if d ∈ Zf2 ∖ {0}.

(7)

Now comparing (4) and (7), we see there is an isomorphism of the ring of
differential operators between the two rings given by, for each < ∈ Z,

k((\G ,−<)! + ⟨(\G ,−<)!\H⟩) = B−< ⋅ (
ℎ2

=
,−<)! + ⟨( ℎ2

=
,−<)!ℎ1⟩ ,

k((\H ,−<)! + ⟨(\H ,−<)!\G⟩) = B−<C−=< ⋅ (
ℎ1

=
,−<)! + ⟨( ℎ1

=
,−<)!ℎ2⟩ ,

k(G<) = B<, and k(H<) = B<C=<.

6 Higher dimensional examples

Thus far, we have considered differential operators determined by radical ideals in
two-dimensional semigroup rings. In this section, we turn to looking at some of the
differential operators in the three-dimensional semigroup ring given by



An illustrated view of differential operators 25

� =
⎡⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1

⎤⎥⎥⎥⎥⎥⎦
and describe some subsets of differential operators of '� given by two different
radical ideals �. For both choices of �, we will compute the graded pieces I(�)d ,
�('�, �)d and (I(�)/�('�, �))d . For the given matrix �,

'� = C[N�] = C[C1, C1C2, C1C3, C1C2C3].

The facets of the cone R≥0� are

f1 = N{41, 41 + 42}, f3 = N{41 + 43, 41 + 42 + 43},
f2 = N{41, 41 + 43}, f4 = N{41 + 42, 41 + 42 + 43},

and the corresponding primitive integral support functions are

ℎ1 = ℎ1(\) = \3, ℎ3 = ℎ3(\) = \1 − \3, ℎ2 = ℎ2(\) = \2, ℎ4 = ℎ4(\) = \1 − \2.

The prime ideals associated to the facets are

%f1 = ⟨C1C3, C1C2C3⟩, %f2 = ⟨C1C2, C1C2C3⟩, %f3 = ⟨C1, C1C2⟩, %f4 = ⟨C1, C1C3⟩,

Fig. 11
Chambers for C[C1, C1C2, C1C3, C1C2C3]

and the prime ideals associated to the
rays (or 1-dimensional faces) of the
cone are

%f1∩f2 = ⟨C1C2, C1C3, C1C2C3⟩,
%f2∩f3 = ⟨C1, C1C2, C1C2C3⟩,
%f3∩f4 = ⟨C1, C1C2, C1C3⟩,
%f1∩f4 = ⟨C1, C1C3, C1C2C3⟩.

In contrast with the two di-
mensional cases considered in Sec-
tions 3, 4, and 5, the increased dimen-

sion of the semigroup N� allows for many more choices for radical monomial ideal
� in '�. We will compute I(�)/�('�, �) for two such choices,

� = %f1 ∩ %f2 ∩ %f3 ∩ %f4 = ⟨C21C2C3⟩ and

� = %f1 ∩ %f2 ∩ %f3∩f4 = ⟨C21C2C3, C21C22C3, C21C2C23⟩.

For both choices of �, to compute the graded pieces of I(�), we will divide up Z3

into 14 chambers, depending on various combinations of signs of ℎ8(d). Table 1
describes the 14 chambers in a list, while Figure 11 illustrates them, with chamber
C1 (given by N�) in the top right with some of the lattice points of N� shown. Note
the G-axis is the vertical axis in this picture.
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Chamber Halfspace inequalities Lattice point inequalities

C1 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d), ℎ4(d) ≥ 0} N�

C2 {d ∈ Z3
∣ ℎ1(d), ℎ3(d) ≥ 0, ℎ2(d) > 0, ℎ4(d) < 0} {d ∈ Z3

∣ 32 > 31 ≥ 33 ≥ 0}

C3 {d ∈ Z3
∣ ℎ2(d), ℎ4(d) ≥ 0, ℎ1(d) > 0, ℎ3(d) < 0} {d ∈ Z3

∣ 33 > 31 ≥ 32 ≥ 0}

C4 {d ∈ Z3
∣ ℎ1(d), ℎ3(d) ≥ 0, ℎ4(d) > 0, ℎ2(d) < 0} {d ∈ Z3

∣ 31 ≥ 33 ≥ 0 > 32}

C5 {d ∈ Z3
∣ ℎ2(d), ℎ4(d) ≥ 0, ℎ3(d) > 0, ℎ1(d) < 0} {d ∈ Z3

∣ 31 ≥ 32 ≥ 0 > 33}

C6 {d ∈ Z3
∣ ℎ1(d), ℎ2(d) ≥ 0, ℎ3(d), ℎ4(d) < 0} {d ∈ Z3

∣ 33 ≥ 0, 32 ≥ 0, 32 > 31, 33 > 31}

C7 {d ∈ Z3
∣ ℎ2(d), ℎ3(d) ≥ 0, ℎ1(d), ℎ4(d) < 0} {d ∈ Z3

∣ 32 ≥ 0 > 33, 32 > 31 ≥ 33}

C8 {d ∈ Z3
∣ ℎ1(d), ℎ4(d) ≥ 0, ℎ2(d), ℎ3(d) < 0} {d ∈ Z3

∣ 33 ≥ 0 > 32, 33 > 31 ≥ 32}

C9 {d ∈ Z3
∣ ℎ3(d), ℎ4(d) ≥ 0, ℎ1(d), ℎ2(d) < 0} {d ∈ Z3

∣ 0 > 32, 0 > 33, 31 ≥ 32, 31 ≥ 33}

C10 {d ∈ Z3
∣ ℎ1(d), ℎ3(d), ℎ4(d) < 0, ℎ2(d) ≥ 0} {d ∈ Z3

∣ 32 ≥ 0 > 33 > 31}

C11 {d ∈ Z3
∣ ℎ2(d), ℎ3(d), ℎ4(d) < 0, ℎ1(d) ≥ 0} {d ∈ Z3

∣ 33 ≥ 0 > 32 > 31}

C12 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d) < 0, ℎ4(d) ≥ 0} {d ∈ Z3

∣ 0 > 33 > 31 ≥ 32}

C13 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ4(d) < 0, ℎ3(d) ≥ 0} {d ∈ Z3

∣ 0 > 32 > 31 ≥ 33}

C14 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d), ℎ4(d) < 0} −Int(N�)

Table 1: The chambers used to compute I(�) in Examples 5 and 6.

We must modify the chambers slightly to compute the graded pieces of �('�, �),
as we now consider which differential operators, when applied to an element in '�,
yield an element in �. Although all of the operators in the graded pieces of I(�) lying
on the facets send � into �, it is not necessarily the case that these operators applied to
an element of '�will output an element in �. So wewill switch the lattice points on the
facets that correspond to monomials that do not lie in � to lie in the adjacent chambers
by interchanging ≥ with >. We will describe these new regions within the examples.

Fig. 12
Cone of '� with ideal � = ⟨C21 C2C3⟩

Example 5 First consider the ideal

� = %f1 ∩ %f2 ∩ %f3 ∩ %f4 = ⟨C21C2C3⟩

in '� = C[C1, C1C2, C1C3, C1C2C3].

In Figure 12, the multidegrees in the
gray cone whose vertex lies at (2, 1, 1)
correspond to the monomials that lie in
�, and the monomials in the outer cone
lie in '� ∖ �. Note also that the view of
the cone that we see in Figure 12 is from
the side of the GI-plane.
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Since none of the points on the facets of the cone have monomials that lie in �, the
14 regions that we consider in determining �('�, �) are listed in Table 2.

Region Halfspace inequalities Lattice point inequalities

R1 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d), ℎ4(d) > 0} Int(N�)

R2 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d) > 0, ℎ4(d) ≤ 0} {d ∈ Z3

∣ 32 ≥ 31 > 33 > 0}

R3 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ4(d) > 0, ℎ3(d) ≤ 0} {d ∈ Z3

∣ 33 ≥ 31 > 32 > 0}

R4 {d ∈ Z3
∣ ℎ1(d), ℎ3(d), ℎ4(d) > 0, ℎ2(d) ≤ 0} {d ∈ Z3

∣ 31 > 33 > 0 ≥ 32}

R5 {d ∈ Z3
∣ ℎ2(d), ℎ3(d), ℎ4(d) > 0, ℎ1(d) ≤ 0} {d ∈ Z3

∣ 31 > 32 > 0 ≥ 33}

R6 {d ∈ Z3
∣ ℎ1(d), ℎ2(d) > 0, ℎ3(d), ℎ4(d) ≤ 0} {d ∈ Z3

∣ 32 > 0, 33 > 0, 32 ≥ 31, 33 ≥ 31}

R7 {d ∈ Z3
∣ ℎ2(d), ℎ3(d) > 0, ℎ1(d), ℎ4(d) ≤ 0} {d ∈ Z3

∣ 32 > 0 ≥ 33, 32 ≥ 31 > 33}

R8 {d ∈ Z3
∣ ℎ1(d), ℎ4(d) > 0, ℎ2(d), ℎ3(d) ≤ 0} {d ∈ Z3

∣ 33 > 0 ≥ 32, 33 ≥ 31 > 32}

R9 {d ∈ Z3
∣ ℎ3(d), ℎ4(d) > 0, ℎ1(d), ℎ2(d) ≤ 0} {d ∈ Z3

∣ 31 > 32, 31 > 33, 0 ≥ 32, 0 ≥ 33}

R10 {d ∈ Z3
∣ ℎ1(d), ℎ3(d) ≤ 0, ℎ4(d) < 0, ℎ2(d) > 0} {d ∈ Z3

∣ 32 > 0 ≥ 33 ≥ 31}

R11 {d ∈ Z3
∣ ℎ2(d), ℎ4(d) ≤ 0, ℎ3(d) < 0, ℎ1(d) > 0} {d ∈ Z3

∣ 33 > 0 ≥ 32 ≥ 31}

R12 {d ∈ Z3
∣ ℎ1(d), ℎ3(d) ≤ 0, ℎ2(d) < 0, ℎ4(d) > 0} {d ∈ Z3

∣ 0 ≥ 33 ≥ 31 > 32}

R13 {d ∈ Z3
∣ ℎ2(d), ℎ4(d) ≤ 0, ℎ1(d) < 0, ℎ3(d) > 0} {d ∈ Z3

∣ 0 ≥ 32 ≥ 31 > 33}

R14 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d), ℎ4(d) ≤ 0} −N�

Table 2: Regions to compute �('�, �) in Example 5.

If d is inC1 (which are the lattice points corresponding to points in the semigroup)
when considering the idealizer or R1 (which are the lattice points corresponding
to the monomials in �) when considering �('�, �), then �('�)d is generated by
multiplication by td . Multiplying any element of � by td remains in � making the
graded pieces of I(�)d = td ⋅C[\] and �('�, �)d = td ⋅C[\].

Since the multidegrees in the chambers and regions corresponding to C2−C5 and
R2 −R5 will all need operators adjusted only for monomials in � whose exponents
are parallel to a single facet in �, we will only describe the process to determine the
graded pieces of I(�) and �('�, �) for chamber C2 and region R2, respectively, as
precisely the same type of argument holds for the other chambers and regions. If d is
in C2 in the case of the idealizer or in R2 in the case of �('�, �), consider the lattice
points corresponding to the monomials in � on the plane G − H + ℎ4(d) = 0. When
an element in I(Ω(d)) is applied to such a monomial in �, the result is a constant
times a monomial with exponent on the facet f4, which is not in �. Hence we need to
multiply I(Ω(d)) by ℎ4 + ℎ4(d), so for d in C2,

I(�)d = td ⋅ ⟨(ℎ4, ℎ4(−d))!⟩
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(a)
d = (1, 2, 1) ∈ C2 and {G − H + ℎ4(d) = 0}

(b)
d = (−1, 0, 0) ∈ C6,

{G − H + ℎ4(d) = 0}, and
{G − I + ℎ4(d) = 0}

(c)
d = (−2, 0, −1) ∈ C10,
{I + ℎ1(d) = 0},

{G − I + ℎ3(d) = 0}, and
{G − H + ℎ4(d) = 0}

Fig. 13: Vanishing planes

and for d in R2,
�('�, �)d = td ⋅ ⟨(ℎ4, ℎ4(−d))!⟩.

Figure 13a illustrates the plane in C2 that determines the linear form that we multiply
by I(Ω(d)) to obtain I(�)d .

Since the multidegrees in the chambers and regions corresponding to C6−C9 and
R6 −R6 will all need operators adjusted only for monomials in � whose exponents
are parallel to two facets of �, we will only describe the process to determine the
graded pieces of I(�) and �('�, �) for chamber C6 and region R6, respectively, as
precisely the same type of argument holds for the other chambers and regions. If
d is in C6 in the case of the idealizer or R6 in the case of �('�, �), consider the
lattice points corresponding to the monomials in � on the planes G − H + ℎ4(d) = 0
and G − I + ℎ3(d) = 0. When an element in I(Ω(d)) is applied to such monomial in
�, the result is a constant times a monomial with exponent on G − H = 0 or G − I = 0,
which is not in �. Hence we need to multiply I(Ω(d)) by (ℎ3 + ℎ3(d))(ℎ4 + ℎ4(d)),
so for d in C6,

I(�)d = td ⋅ ⟨(ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩,
and for d in R6,

�('�, �)d = td ⋅ ⟨(ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩.

Figure 13b illustrates the two planes in C6 that determine the linear forms that we
multiply I(Ω(d)) by to obtain I(�)d .

Since the multidegrees in the chambers and regions corresponding to C10 −C13
and R10 − R13 will all need operators adjusted only for monomials in � whose
exponents are parallel to three facets of �, we will only describe the process to
determine the graded piece of I(�) and �('�, �) for chamber C10 and region R10,
respectively, as precisely the same type of argument holds for the other chambers and
regions. If d is in C10 in the case of the idealizer or R10 in the case of �('�, �),
consider the lattice points corresponding to the monomials in � on the planes
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I + ℎ1(d) = 0, G − I + ℎ3(d) = 0 and G − H + ℎ4(d) = 0. When an element of I(Ω(d))
is applied to such a monomial in �, the result is a constant times a monomial whose
exponent is in f1, f3, or f4, which is not in �. Hence we need to multiply I(Ω(d))
by (ℎ1 + ℎ1(d))(ℎ3 + ℎ3(d))(ℎ4 + ℎ4(d)), so for d in C10,

I(�)d = td ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩,

and for d in R10,

�('�, �)d = td ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩.

Figure 13c illustrates the three planes in C10 that determine the linear forms that we
multiply by I(Ω(d)) to obtain I(�)d .

If d is in C14 in the case of the idealizer or R14 in the case of �('�, �), consider
the lattice points corresponding to the monomials in � on the planes I + ℎ1(d) = 0,
H + ℎ2(d) = 0, G − I+ ℎ3(d) = 0 and G − H + ℎ4(d) = 0. When an element of I(Ω(d))
is applied to such a monomial in �, the result is a constant times a monomial with
exponent on one of the facets f8 of �, which is not in �. Hence we need to multiply
I(Ω(d)) by (ℎ1 + ℎ1(d))(ℎ2 + ℎ2(d))(ℎ3 + ℎ3(d))(ℎ4 + ℎ4(d)), so for d in C14,

I(�)d = td ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ2, ℎ2(−d))! (ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩,

and for d in R14,

�('�, �)d = td ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ2, ℎ2(−d))! (ℎ3, ℎ3(−d))! (ℎ4, ℎ4(−d))!⟩.

Combining the information from all 14 chambers C1-C14 and regions R1-R14,
the general formula for the graded piece of the idealizer of � at d ∈ Z3 is

I(�)d = td ⋅ ⟨ ∏
ℎ8(d)<0

(ℎ8 , ℎ8(−d))!⟩ ,

and the general formula for the graded piece of the �('�, �) at d ∈ Z3 is

�('�, �)d = td ⋅ ⟨ ∏
ℎ8(d)≤0

(ℎ8 , ℎ8(−d))!⟩ .

For any d ∈ Z3,

( I(�)
�('�, �)

)
d

= td ⋅
⟨ ∏
ℎ8(d)<0

(ℎ8 , ℎ8(−d))!⟩

⟨ ∏
ℎ8(d)≤0

(ℎ8 , ℎ8(−d))!⟩
.

Example 6 Now consider the ideal
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� = %f1 ∩ %f2 ∩ %f3∩f4 = ⟨C21C2C3, C21C22C3, C21C2C23⟩

in '� = C[C1, C1C2, C1C3, C1C2C3]. In Figure 14, we give two views of the cone with the
lattice points in � shaded in grey. Note that multidegrees of the monomials in � lie in
the interior of the cone and on the interiors of the two faces f3 and f4, so this is the
grey portion of the figure.

Fig. 14: Cone of '� with � = %f1 ∩ %f2 ∩ %f3∩f4

Since the only points on the facets of the cone that have monomials that lie in
� lie in the interiors of f3 and f4, the 14 regions that we consider in determining
�('�, �) appear in Table 3.

If d is in C1 = N�, when considering the idealizer or R1, which are the exponents
of the monomials in �, when considering �('�, �), then �('�)d is generated by td .
The product of any element of � and td is also an element of �, which means that the
graded pieces are I(�)d = td ⋅C[\] and �('�, �)d = td ⋅C[\].

Since the multidegrees in C2 −C5 and R2 −R5 potentially affect monomials in �
whose exponents are parallel to a single facet of �, we will only describe the process
to determine the graded pieces of I(�) and �('�, �) for chamber C2 and region R2,
respectively, as precisely the same type of argument holds for the other chambers and
regions. The reader may refer to Figure 13a to help visualize the argument below. If d
is in C2 in the case of the idealizer or R2 in the case of �('�, �), consider exponents
of monomials in � on the plane G − H + ℎ4(d) = 0. When an element of I(Ω(d)) is
applied to such a monomial in �, the result is a constant times a monomial on the
interior of the facet f4, which is in �. Hence, for d in C2,

I(�)d = td ⋅ ⟨(ℎ4, ℎ4(−d) − 1)!⟩,

and for d in R2,
�('�, �)d = td ⋅ ⟨(ℎ4, ℎ4(−d) − 1)!⟩.

Since the multidegrees in the chambers and regions corresponding to C6−C9 and
R6−R9 can will all need operators adjusted only for monomials in � whose exponents
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Region Halfspace inequalities Lattice point inequalities

R1 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ3(d) > 0, ℎ4(d) ≥ 0} ∪

{d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ4(d) > 0, ℎ3(d) ≥ 0}

{d ∈ Z3
∣ xd

∈ �}

R2 {d ∈ Z3
∣ ℎ1(d), ℎ2(d) > 0, ℎ3(d) ≥ 0, ℎ4(d) < 0} {d ∈ Z3

∣ 32 > 31 ≥ 33 > 0}

R3 {d ∈ Z3
∣ ℎ1(d), ℎ2(d) > 0, ℎ4(d) ≥ 0, ℎ3(d) < 0} {d ∈ Z3

∣ 33 > 31 ≥ 32 > 0}

R4 {d ∈ Z3
∣ ℎ1(d), ℎ3(d), ℎ4(d) > 0, ℎ2(d) ≤ 0} ∪

{d ∈ Z3
∣ ℎ3(d) = 0, ℎ1(d), ℎ4(d) > 0, ℎ2(d) < 0}

{d ∈ Z3
∣ 31 > 33 > 0 ≥ 32} ∪

{d ∈ Z3
∣ 31 = 33 > 0 > 32}

R5 {d ∈ Z3
∣ ℎ2(d), ℎ3(d), ℎ4(d) > 0, ℎ1(d) ≤ 0} ∪

{d ∈ Z3
∣ ℎ4(d) = 0, ℎ2(d), ℎ3(d) > 0, ℎ1(d) < 0}

{d ∈ Z3
∣ 31 ≥ 32 > 0 ≥ 33} ∪

{d ∈ C3
∣ 31 = 32 > 0 > 33}

R6 {d ∈ Z3
∣ ℎ1(d), ℎ2(d) > 0 and ℎ3(d), ℎ4(d) < 0} ∪

{d ∈ Z3
∣ ℎ1(d) > 0, ℎ2(d) > 0, ℎ3(d) = ℎ4(d) = 0}

{d ∈ Z3
∣ 33 > 0, 32 > 0, 32 > 31, 33 > 31} ∪

{d ∈ Z3
∣ 31 = 32 = 33 > 0}

R7 {d ∈ Z3
∣ ℎ2(d), ℎ3(d) > 0, ℎ1(d) ≤ 0, ℎ4(d) < 0} ∪

{d ∈ Z3
∣ ℎ2(d) > 0, ℎ3(d) = 0, ℎ1(d) < 0}

{d ∈ Z3
∣ 32 > 0 ≥ 33, 32 > 31 > 33} ∪

{d ∈ Z3
∣ 32 > 0 > 31 = 33}

R8 {d ∈ Z3
∣ ℎ1(d), ℎ4(d) > 0, ℎ2(d) ≤ 0, ℎ3(d) < 0} ∪

{d ∈ Z3
∣ ℎ1(d) > 0, ℎ4(d) = 0, ℎ2(d) < 0}

{d ∈ Z3
∣ 33 > 0 ≥ 32, 33 > 31 > 32} ∪

{d ∈ Z3
∣ 33 > 0 > 31 = 32}

R9
{d ∈ Z3

∣ ℎ3(d), ℎ4(d) > 0, ℎ1(d), ℎ2(d) ≤ 0} ∪
{d ∈ Z3

∣ ℎ1(d), ℎ2(d) < 0, ℎ4(d) > 0, ℎ3(d) = 0} ∪
{d ∈ Z3

∣ ℎ1(d), ℎ2(d < 0, ℎ3(d) > 0, ℎ4(d) = 0}

{d ∈ Z3
∣ 31 > 32, 33, 0 ≥ 32, 33} ∪

{d ∈ Z3
∣ 0 > 31 = 32, 0 > 31 > 33} ∪

{d ∈ Z3
∣ 0 > 31 = 33, 0 > 31 > 32}

R10 {d ∈ Z3
∣ ℎ1(d) ≤ 0, ℎ3(d), ℎ4(d) < 0, ℎ2(d) > 0} {d ∈ Z3

∣ 32 > 0 ≥ 33 > 31}

R11 {d ∈ Z3
∣ ℎ2(d) ≤ 0, ℎ4(d), ℎ3(d) < 0, ℎ1(d) > 0} {d ∈ Z3

∣ 33 > 0 ≥ 32 > 31}

R12 {d ∈ Z3
∣ ℎ1(d), ℎ3(d) < 0, ℎ2(d) ≤ 0, ℎ4(d) ≥ 0} {d ∈ Z3

∣ 0 ≥ 32 > 31 ≥ 33}

R13 {d ∈ Z3
∣ ℎ2(d), ℎ4(d) < 0, ℎ1(d) ≤ 0, ℎ3(d) ≥ 0} {d ∈ Z3

∣ 0 ≥ 33 > 31 ≥ 32}

R13 {d ∈ Z3
∣ ℎ1(d), ℎ2(d), ℎ4(d) ≤ 0, ℎ3(d) > 0} {d ∈ Z3

∣ 0 ≥ 32 ≥ 31 > 33}

R14 {d ∈ Z3
∣ ℎ1(d), ℎ2(d)ℎ3(d) ≤ 0, ℎ4(d) < 0} ∪

{d ∈ Z3
∣ ℎ1(d), ℎ2(d)ℎ4(d) ≤ 0, ℎ3(d) < 0}

{d ∈ Z3
∣ 31 < 32 ≤ 0, 31 ≤ 33 ≤ 0} ∪

{d ∈ Z3
∣ 31 ≤ 32 ≤ 0, 31 < 33 ≤ 0}

Table 3: Regions for �('�, �) in Example 6.

are parallel to two facets of �, we will only describe the process to determine the
graded piece of I(�) and �('�, �) for chamber C6 and region R6, respectively, as
precisely the same type of argument holds for the other chambers and regions. The
reader may refer to Figure 13b to help visualize the argument below. If d is in C6 in
the case of the idealizer or R6 in the case of �('�, �), consider the multidegrees
of monomials in � on the planes G − I + ℎ3(d) = 0 or G − H + ℎ4(d) = 0. When an
element of I(Ω(d)) is applied to such a monomial in �, the result is a constant times
a monomial on f3 or f4. This is not in � only if this monomial’s exponent is in
the intersection of the two planes. Hence, we need to multiply I(Ω(d)) by either
(ℎ3 + ℎ3(d)) or (ℎ4 + ℎ4(d)), so that for d in C6,
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I(�)d = td ⋅ (ℎ4, ℎ4(−d) − 1)! (ℎ3, ℎ3(−d) − 1)! ⋅ ⟨(ℎ3 + ℎ3(d)), (ℎ4 + ℎ4(d))⟩,

and for d in R6,

�('�, �)d =
td ⋅ (ℎ4, ℎ4(−d) − 1)! (ℎ3, ℎ3(−d) − 1)! ⋅ ⟨(ℎ3 + ℎ3(d)), (ℎ4 + ℎ4(d))⟩.

Since the multidegrees in the chambers and regions corresponding to C10 −C13
and R10 −R13 can will all need operators adjusted only for monomials in � whose
exponents are parallel to a three facets of �, we will only describe the process to
determine the graded piece of I(�) and �('�, �) for chamber C10 and region R10,
respectively, as precisely the same type of argument holds for the other chambers and
regions. The reader may refer to Figure 13c to help visualize the argument below. If
d is in C10 in the case of the idealizer or R10 in the case of �('�, �), consider the
multidegrees of monomials in � on the planes I + ℎ1(d) = 0, G − I + ℎ3(d) = 0, and
G − H + ℎ4(d) = 0. When an element in I(Ω(d)) is applied to such a monomial in �,
the result is a constant times a monomial on f1, which is not in �, or a constant times
a monomial in f3 or f4, which is not in � only if the monomial is in the intersection of
f3 and f4. Hence, we need to multiply I(Ω(d)) by either (ℎ1 + ℎ1(d))(ℎ3 + ℎ3(d))
or (ℎ1 + ℎ1(d))(ℎ4 + ℎ4(d)), so that for d in C10,

I(�)d = td ⋅
(ℎ1, ℎ1(−d))! (ℎ3, ℎ3(−d) − 1)! (ℎ4, ℎ4(−d) − 1)! ⋅ ⟨(ℎ3 + ℎ3(d)), (ℎ4 + ℎ4(d))⟩,

and for d in R10,

�('�, �)d = td ⋅
(ℎ1, ℎ1(−d))! (ℎ3, ℎ3(−d) − 1)! (ℎ4, ℎ4(−d) − 1)! ⋅ ⟨(ℎ3 + ℎ3(d)), (ℎ4 + ℎ4(d))⟩.

If d is in C14 in the case of the idealizer or R14 in the case of �('�, �), consider
the multidegrees of the monomials in � on the planes I + ℎ1(d) = 0, H + ℎ2(d) = 0,
G − I + ℎ3(d) = 0, and G − H + ℎ4(d) = 0. When an element of I(Ω(d)) is applied
to such a monomial in �, the result is a constant times a monomial in f1 or f2,
which is not in �, or a constant times a monomial in f3 or f4, which is not in
� if this monomial lies in both planes parallel to these faces. Hence we need to
multiply I(Ω(d)) by (ℎ1 + ℎ1(d))(ℎ2 + ℎ2(d))(ℎ3 + ℎ3(d))(ℎ4 + ℎ4(d) − 1) or
(ℎ1 + ℎ1(d))(ℎ2 + ℎ2(d))(ℎ3 + ℎ3(d) − 1)(ℎ4 + ℎ4(d)), so that for d in C14,

I(�)d = td ⋅
4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨(
3
∏
8=1

(ℎ8 + ℎ8(d))) , (ℎ4 + ℎ4(d))(
2
∏
8=1

(ℎ8 + ℎ8(d)))⟩

and for d in R14,
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�('�, �)d = td ⋅
4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨(
3
∏
8=1

(ℎ8 + ℎ8(d))) , (ℎ4 + ℎ4(d))(
2
∏
8=1

(ℎ8 + ℎ8(d)))⟩ .

Putting all the information together from all 14 chambers C1-C14 and regions
R1-R14, the general formula for the graded piece of the idealizer of � at d ∈ Z3 is

I(�)d = td ⋅

4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨
⎛
⎜⎜
⎝
∏

ℎ8(d)<0
for 8≠4

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝
∏

ℎ8(d)<0
for 8≠3

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
⟩ ,

and the general formula for the graded piece of �('�, �) at d ∈ Z3 is

�('�, �)d = td ⋅

4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨
⎛
⎜⎜
⎝
∏

ℎ8(d)≤0
for 8≠4

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝
∏

ℎ8(d)≤0
for 8≠3

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
⟩ .

We also have for any d ∈ Z3,

( I(�)
�('�, �)

)
d

= td ⋅

4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨
⎛
⎜⎜
⎝
∏

ℎ8(d)<0
for 8≠4

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝
∏

ℎ8(d)<0
for 8≠3

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
⟩

4
∏
8=1

(ℎ8 , ℎ8(−d) − 1)! ⋅ ⟨
⎛
⎜⎜
⎝
∏

ℎ8(d)≤0
for 8≠4

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝
∏

ℎ8(d)≤0
for 8≠3

(ℎ8 + ℎ8(d))
⎞
⎟⎟
⎠
⟩

.

7 Non-normal examples

Thus far, we have restricted our attention to normal semigroup rings. However,
Saito and Traves determined the ring of differential operators for all saturated affine
semigroup rings in [ST01, Theorem 3.3.1] (see also [ST04, Theorem 2.1]), and we
can use this work to compute I(�), �('�, �) and I(�)/�('�, �) for non-normal
'� and a graded radical '�-ideal �. We broaden slightly from normal to scored
semigroup rings, see Definition 2. We include two examples; one is scored and the
other is not. However, the two quotient rings modulo the interior ideals are isomorphic
and we will see that the expressions for I(�)/�('�, �) in both rings are isomorphic.
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Example 7 Consider the matrix � =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 3 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, which is associated to the semigroup

ring '� = C[N�] = C[B2, B3, C]. Since '� is not normal, note that integer points in
the faces of � and N� differ from those in R≥0�. We let

f1 = N{42} and f2 = N{41}

be the integer points in the facets of the cone R≥0�. The primitive integral support
functions of N� are

ℎ1 = ℎ1(\) = \1 and ℎ2 = ℎ2(\) = \2.

The prime ideals associated to the facets of � are

%1 = ⟨B2, B3⟩ and %2 = ⟨C⟩.

Set � = %1 ∩ %2 = ⟨B2C, B3C⟩. Note that '� is a Gorenstein ring that is not normal, and,
in this case, the ideal �, which is the interior, is not the canonical module of '�.

Fig. 15:
Chambers for C[B2, B3, C]

We will again use chambers of Z2 to aid
in our computations of the graded pieces of
I(�)/�('�, �); in particular, we show that
I(�)/�('�, �) is only nonzero in multidegree
d if d ∈ f1 ∪f2, as occurred in the normal cases
computed thus far. In Figure 15, the red multi-
degrees correspond to the monomials in �, and
the blue multidegrees are exponents for mono-
mials in the semigroup ring '� that do not lie
in �. The monomials at the orange multidegrees
behave somewhat more like the red and blue,
in that, for all such d, I(�)d = �('�)d . Thus,
together the red, blue, and orange multidegrees

form chamber C1. The yellow multidegrees constitute C2, the violet points form
C3, and both the green and dark green make C4. The vertical lines {G = −1} and
{G = 1} contain multidegrees d for which extra care is needed to determine I(�)d
and �('�, �)d .

Eriksen showed in [Eri03, Proposition 2.1] that the ring of differential operators
of a numerical semigroup ring ' = C[CΓ] is

�(') =⊕
3∈Z

B31 C32 ⋅ ⟨ ∏
W∈Ω(3)

(\ − W)⟩ ,

where Ω(3) = {W ∈ Γ ∣ W + 3 ∉ Γ}. We encode these polynomial generators using
�d(\), where



An illustrated view of differential operators 35

�d(\) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 31 ∈ N⟨2, 3⟩,
ℎ1 if 31 = 1,
ℎ1 − 1 if 31 = −1,

(ℎ1, 1 − 31)!
(ℎ1 − 1)(ℎ1 + 31)

if 31 ≤ −2.

By Theorem 1, for any d ∈ Z2,

�('�)d = B31 C32 ⋅ ⟨�d(\) (ℎ2,−32 − 1)!⟩ .

To determine I(�) or �('�, �), we must determine the lines of multidegrees that
contain operators that, when applied to monomials in � or ', produce elements in
' ∖ �. Note that given m ∈ N�,

B31 C32�d(\) (ℎ2,−32 − 1)! ∗ B<1 C<2 = �d(m)(ℎ2(m),−32 − 1)! ⋅ B31+<1 C32+<2 .

(8)

If d ∈ C1 and B<1 C<2 ∈ �, then the result of (8) will remain in �. Thus, for all d ∈ C1,
�('�, �)d = B31 C32 ⋅ ⟨�d(\)⟩.

Next, for d ∈ C2, when m ∈ N� ∩ {G = −31}, then the result of (8) is a constant
times a monomial in f1, which does not belong to �. Hence, for all d ∈ C2,

I(�)d = B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31)⟩.

Further, if d ∈ C2 ∪ (f1 ∖ {0}), then

�('�, �)d = B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31)⟩.

For d ∈ C4, when m ∈ N� ∩ {H = −32}, then the result of (8) is a constant times a
monomial in f2, which does not belong to �. Hence, for all d ∈ C4,

I(�)d = B31 C32 ⋅ ⟨�d(\) (ℎ2,−32)!⟩.

Further, if d ∈ C4 ∪ (f2 ∖ {0}), then

�('�, �)d = B31 C32 ⋅ ⟨(ℎ2,−32)!⟩.

Finally, for d ∈ C3, if m ∈ {G = −31} ∩ {c ∣ B21 C21 ∈ �} or if m ∈ {H = −32} ∩N�,
respectively, then the result of (8) is either a constant times a monomial in f1 or f2,
respectively. Hence,

I(�)d = B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31) (ℎ2,−32)!⟩.

Finally, if d ∈ C3 ∪ (−f1) ∪ (−f2), then

�('�, �)d = B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31) (ℎ2,−32)!⟩.
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Gathering these computations,

I(�)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅ ⟨�d(\)⟩ if d ∈ C1,
B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31)⟩ if d ∈ C2,
B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31) (ℎ2,−32)!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨�d(\) (ℎ2,−32)!⟩ if d ∈ C4,

and

�('�, �)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅ ⟨�d(\)⟩ if d ∈ C1 ∖ (f1 ∪ f2),
B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31)⟩ if d ∈ (C2 ∖ f2) ∪ (f1 ∩ {32 > 0}),
B31 C32 ⋅ ⟨�d(\)⋅

(ℎ1 + 31) (ℎ2,−32)!⟩ if d ∈ C3 ∪ {0} ∪ (−f1) ∪ (−f2),
B31 C32 ⋅ ⟨�d(\) (ℎ2,−32)!⟩ if d ∈ (C4 ∖ f1) ∪ (f2 ∩ {31 > 0}).

Taking the quotient of the above multigraded modules, we then obtain a description
of the graded pieces of I(�)/�('�, �) as follows:

( I(�)
�('�, �)

)
d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ Zf1 ∪ Zf2,
C[\]
⟨ℎ1ℎ2⟩

if d = 0,

B31 C32 ⋅ ⟨�d(\)⟩
⟨�d(\)ℎ2⟩

, if 31 ≠ 0, 32 = 0,

B31 C32 ⋅ ⟨�d(\)⟩
⟨�d(\)ℎ1⟩

if 31 = 0, 32 > 0,

B31 C32 ⋅ ⟨�d(\) (ℎ2,−32)!⟩
⟨ℎ1�d(\) (ℎ2,−32)!⟩

if 31 = 0, 32 < 0.

In this case, ��('�) = �('�, �), so (2) happens to hold in this example. To see
this, compute (��('�))d by looking at I(Ω(d − (2, 1)) and I(Ω(d − (3, 1)) for any
d ∈ Z3. For an example of how showing this equality works, when (31 − 2, 32 − 1)
and (31 − 3, 32 − 1) are both in C2 ∖ f2, then for 31 < 0,

�(31−2,32−1)(\) =
(ℎ1, 3 − 31)!

(ℎ1 − 1)(ℎ1 + 31 − 2) and

�(31−3,32−1)(\) =
(ℎ1, 4 − 31)!

(ℎ1 − 1)(ℎ1 + 31 − 3) .

Both of these polynomials are divisible by �d(\)(ℎ1 + 31):

�(31−2,32−1)(\) =
(ℎ1, 3 − 31)!

(ℎ1 − 1)(ℎ1 + 31 − 2)
= �d(\)(ℎ1 + 31)(ℎ1 + 31 − 3)
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and

�(31−2,32−1)(\) =
(ℎ1, 4 − 31)!

(ℎ1 − 1)(ℎ1 + 31 − 2)
= �d(\)(ℎ1 + 31)(ℎ1 + 31 − 2)(ℎ1 + 31 − 4).

Further,
1 = (ℎ1 + 31 − 3)2 − (ℎ1 + 31 − 2)(ℎ1 + 31 − 4),

which implies that

⟨�d(\)(ℎ1 + 31)⟩ = ⟨�(31−2,32−1)(\), �(31−3,32−1)(\)⟩ .

Hence for d ∈ C2, there is an equality �('�, �)d = B31 C32 ⋅ ⟨�d(\)(ℎ1 + 31)⟩ =
(��('�))d .

Example 8 Consider the matrix �̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0

1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, which is associated to the semigroup

ring '
�̃
= C[N�̃] = C[BC, B2, B3, C], which is not normal, scored, or Gorenstein. As in

Example 7, we denote the integer points in the facets of the cone R≥0 �̃ by

f1 = N{42} and f2 = N{41}.

Fig. 16
Chambers for
C[BC , B2, B3, C]

The primitive integral support functions of N�̃
are

ℎ1 = ℎ1(\) = \1 and ℎ2 = ℎ2(\) = \2.

The prime ideals associated to the facets of �̃
are

%1 = ⟨BC, B2, B3⟩ and %2 = ⟨BC, C⟩.

Finally, set �̃ = %1 ∩ %2 = ⟨BC, B2C⟩.
Note that '�/� from Example 7 is isomor-

phic to '
�̃
/�̃. Hence, we would also expect that

I(�)/�('�, �) ≅ I(�)/�('
�̃
, �̃).Wewill deter-

mine the graded pieces of I(�̃) and � ('
�̃
, �̃),

as well as I(�̃)/�('
�̃
, �̃); then, we will exhibit an isomorphism between the graded

pieces of I(�̃)/�('
�̃
, �̃) and I(�)/�('�, �).

We will again use chambers of Z2 to aid in our computations of the graded pieces
of I(�)/�('�, �). In Figure 16, the red multidegrees correspond to monomials in
�̃, while the blue ones (both light and dark) are the remaining d ∈ Z2 for which
�('

�̃
)d = I(�̃)d; together, these red and blue multidegrees form chamber C1. The
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remaining multidegrees are split into chambers as in the previous examples: yellow
points form C2, violet points make C3, and green points give C4.

In [ST01, Examples 3.2.7 and 3.3.4], Saito and Traves found that for any d ∈ Z2,
�('

�̃
)d = B31 C32 ⋅ I(Ω(d)), where

I(Ω(d)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨
2
∏
8=1

(ℎ8 , ℎ8(−d) − 1)!⟩ if d ∉ 41 −N�̃,
2
∏
8=1

(ℎ8 , ℎ8(−d) − 1)!⋅

⟨ℎ1 + 31 − 1, ℎ2 + 32⟩ if d ∈ 41 −N�̃.

(9)

To compute I(�̃), we first determine which elements of I(Ω(3)) are already in I(�̃).
To do this, we first break up (9) into cases by chamber:

I(�̃)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅ I(Ω(d)) if d ∈ C1,
B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d))!⟩ if d ∈ C2 ∖ (−f2),
B31 C32 ⋅ (ℎ1, ℎ1(−d))! ⋅ ⟨ℎ1 + 31 − 1, ℎ2⟩ if d ∈ (−f2),
B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d))! (ℎ2, ℎ2(−d))!⟩ if d ∈ C3,
B31 C32 ⋅ ⟨(ℎ2, ℎ2(−d))!⟩ if d ∈ C4.

Similarly,

�('
�̃
, �̃)d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B31 C32 ⋅C[\] if B31 C32 ∈ �̃,
B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d))!⟩ if d ∈ (C2 ∖ (−f2)) ∪ (f1 ∖ {0}),
B31 C32 ⋅ ⟨(ℎ2, ℎ2(−d))!⟩ if d ∈ C4 ∖ (−f1),
B31 C32 ⋅ ⟨(ℎ1, ℎ1(−d))!⋅

(ℎ2, ℎ2(−d))!⟩ if d ∈ C3 ∪ (−f1) ∪ (−f2).

Putting these together, the graded piece of I(�̃)/�('
�̃
, �̃) at d ∈ Z2 is

I(�̃)
�('

�̃
, �̃)

d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d ∉ Zf1 ∪ Zf2,

B31 C32 ⋅ C[\]⟨ℎ1⟩
if d ∈ f1 ∖ {0},

B31 C32 ⋅ C[\]⟨ℎ2⟩
if d ∈ f2 ∖ {0, (1, 0)},

B31 C32 ⋅ C[\]⟨\1\2⟩
if d = 0,

B31 C32 ⋅ ⟨ℎ1, ℎ2⟩
⟨ℎ2⟩

if d = (1, 0),

B31 C32 ⋅ (ℎ1, ℎ1(−d))!⟨ℎ1 + 31 − 1, ℎ2⟩
⟨(ℎ1, ℎ1(−d))!ℎ2⟩

if d ∈ (−f2) ∖ {0},

B31 C32 ⋅ ⟨(ℎ2, ℎ2(−d))!⟩
⟨ℎ1 (ℎ2, ℎ2(−d))!⟩

if d ∈ (−f1) ∖ {0}.
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Looking at the graded pieces of I(�)/�('�, �) from Example 7 and noting that
�d(\) = C[\] for d ∈ (f1) ∪ (f2 ∖ {0, (1, 0)}, it follows that (I(�)/�('�, �))d is
identical to (I(�̃)/�('

�̃
, �̃))

d
for all d except d = (1, 0) and d ∈ (−f2)∖{0}. So we

only need to exhibit that the graded pieces are isomorphic for d ∈ {(1, 0)} ∪ (−f2) ∖
{0}. Note that for 31 < 0 and 31 ≠ −1,

⟨ (ℎ1, 1 − 31)!
(ℎ1 − 1)(ℎ1 + 31)

⟩

⟨ (ℎ1, 1 − 31)! ℎ2

(ℎ1 − 1)(ℎ1 + 31)
⟩
≅ ⟨(ℎ1, 1 − 31)!⟩

⟨(ℎ1, 1 − 31)! ℎ2⟩

by the Third Isomorphism Theorem, and

(ℎ1, ℎ1(−d))!⟨ℎ1 + 31 − 1, ℎ2⟩
⟨(ℎ1, ℎ1(−d))!ℎ2⟩

≅ ⟨(ℎ1, 1 − 31)!⟩
⟨(ℎ1, 1 − 31)! ℎ2⟩

by the Second Isomorphism Theorem. A similar argument gives an isomorphism in
the remaining multidegrees. Combining the information on all graded pieces, we
have explicitly shown that

I(�̃)
� ('

�̃
, �̃)

≅ I(�)
� ('�, �)

.
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