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1. Introduction

A magic square M is an n × n matrix in which entries along each row, each column, 
the main diagonal, and the cross diagonal add to the same value μ called the magic sum
of M . If the entries of M are integers from 1 through n2 where each number appears 
once then μ = n(n2+1)

2 and M is called a classical magic square (or natural magic 
square).

A magic square M = [mi,j ] is said to be regular (also called associated or symmetrical) 
if the sum of the entries mi,j and mn+1−i,n+1−j that are symmetrically placed across 
the center of the square is equal to the number 2μ

n . In the case of classical magic square 
this sum is n2 + 1.

Dürer’s magic square
⎡
⎢⎢⎢⎣

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

⎤
⎥⎥⎥⎦

is an example of a regular magic square [7]. In [5] Mattingly proved that every even order 
regular magic square is singular (that is, determinant of the magic square is zero). In [4]
Loly et al. found that not all of the 5 ×5 regular classical magic squares are nonsingular. 
In [3] an example of a 9 × 9 regular classical magic square that is singular is given.

As a result the question of when an odd order regular magic square is singular or 
nonsingular was addressed in [3]. A necessary and sufficient condition for an odd order 
regular magic square to be nonsingular was given. In addition a method to construct 
nonsingular regular classical magic squares using circulant matrices is given when the 
order of the magic square is an odd prime power [3].

In this paper we extend this construction method of regular classical magic squares to 
all odd orders. Moreover, we show that this construction method will produce a singular 
or nonsingular regular classical magic square based on the choice of the first row of the 
circulant matrix used in the construction.

2. A construction of regular magic squares

In this section we present the method of construction used in [3] to produce regular 
classical magic squares.

Let E denote the matrix of all 1’s for its entries and e denote the column vector 
of all 1’s. Since Me = μe we observe that the magic sum μ is an eigenvalue of magic 
square M . The following theorem is found in [1].

Theorem 2.1. If M is an n × n magic square and ρ is a complex number, then M + ρE

has the same eigenvalues of M except that μ is replaced with μ + ρn.
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Definition 2.2. If M is a regular magic square we define

Z = M − μ

n
E

to be the corresponding zero regular magic square.

From Theorem 2.1 it follows that zero regular magic square has the same eigenvalues 
as M except that μ is replaced by 0.

Let J denote the permutation matrix obtained by writing 1 in each of the cross 
diagonal entries and 0 elsewhere. Since multiplying a matrix on the left by J reverses the 
order of the rows and multiplying on the right by J reverses the order of the columns we 
observe that an n ×n matrix M is a regular magic square if and only if M+JMJ = 2μ

n E.

Definition 2.3. An n ×n matrix B with real entries is said to be centroskew if JBJ = −B.

It is easy to verify that the zero regular magic square Z in Definition 2.2 is a centroskew 
matrix. The method of construction used in [3] uses a special type of circulant matrix 
which is defined below. A matrix is said to be circulant if each row other than the first 
row is obtained from the preceding row by shifting entries cyclically one column to the 
right.

For the rest of the paper let n denote an odd integer and S denote the set

S =
{
−n− 1

2 , . . . ,−1, 0, 1, . . . , n− 1
2

}
. (1)

Definition 2.4. Let �a = (a1, a2, . . . , an) be a list consisting of n distinct members from S
in (1) and a1 = 0. A circulant matrix A with its first row equal �a is called an S-circulant 
matrix.

The following two results are from [3]:

1. Suppose A is an S-circulant matrix. Then A is a zero magic square.
2. Suppose A is an S-circulant matrix. Then A is centroskew if and only if

aj+1 + an+1−j = 0 for j = 1, . . . , n− 1.

Example 2.5. The following is an S-circulant matrix that is centroskew.
⎡
⎢⎢⎢⎢⎢⎣

0 1 2 −2 −1
−1 0 1 2 −2
−2 −1 0 1 2
2 −2 −1 0 1
1 2 −2 −1 0

⎤
⎥⎥⎥⎥⎥⎦
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A procedure to construct a regular classical magic square

Step 1: Let A be a centroskew S-circulant matrix of odd order n. Define Z = nA + AJ . 
Then Z is a centroskew zero magic square with n2 distinct entries from the set

Q =
{
−n2 − 1

2 , . . . ,−1, 0, 1, . . . , n
2 − 1
2

}
. (2)

Step 2: Let M = Z + n2+1
2 E. Then M is a regular classical magic square.

Using the above procedure it is shown in [3] that

1. rank(Z) = rank(A),
2. if n is an odd prime then rank(Z) = n − 1 and M is nonsingular,
3. if n = pt where p is an odd prime and the first row of A is �a = (a1, a2, . . . , an) with 

aj = j − 1 for j = 1, 2, . . . , n+1
2 , then rank(Z) = n − 1 and M is nonsingular, and

4. by using other first rows for A, examples of singular M were given for n = 9 and 
n = 15.

The construction method makes use of the following known facts [6, p. 243], [2, p. 33, 
100] about circulant matrices whose first row is given by �a = (a1, a2, . . . , an). If A is a 
circulant matrix then A∗A = AA∗, so that A is normal. Hence every circulant matrix is 
unitarily similar to diagonal matrix. Moreover the eigenvalues of the circulant matrix A
are determined by the entries of the first row and are given by

{
n−1∑
j=0

aj+1ω
kj : k = 0, 1, ..., n− 1 and ω = e

2πi
n

}
. (3)

If there is only one zero eigenvalue in (3) the above construction method will produce 
a nonsingular regular classical magic square. If (3) has more than one zero eigenvalue 
then the construction method will produce a singular regular classical magic square.

In Section 3 we provide construction of nonsingular regular classical magic squares of 
all odd order extending the results of [3]. In Section 4 we generalize our construction to 
include singular regular classical magic squares of odd order. Since the construction steps 
are outlined above we only mention the first row �a = (a1, a2, . . . , an) of the centroskew 
S-circulant matrix A when giving examples.

3. Nonsingular regular magic squares

We utilize the construction in previous section to create nonsingular regular magic 
squares for all odd n. As seen before, the designation of the first row of matrix A deter-
mines its eigenvalues by (3).
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For the remainder of the paper let Re(r) be the real part of complex number r and 
let Im(r) be the imaginary part of r. With this notation r = Re(r) + i Im(r).

Define the first row of matrix A by aj = j− 1 for j = 1, . . . , n+1
2 and assign an−j+1 =

−aj+1 for 1 ≤ j ≤ n − 1. Furthermore let ω be the nth root of unity, ω = e
2πi
n .

For simplicity, we use the notation En(x) to denote the polynomial; En(x) =∑n−1
j=0 aj+1x

j . As an example, if n = 5 then the associated matrix is the matrix given in 
Example 2.5 and the polynomial is E5(x) = 0 + 1x + 2x2 − 2x3 − 1x4. The polynomial 
notation En(x) allows us to rewrite the set in (3) as

{
En

(
ωk

)
: k = 0, 1, ..., n− 1

}
. (4)

With the above definition for the first row of A,

En(x) =
n−1

2∑
j=0

jxj +
n−1

2∑
j=1

(−j)xn−j . (5)

Lemma 3.1. If En(x) and ω are defined as above, then En(ω) �= 0.

Proof. We examine the number En(ω) =
∑n−1

2
j=0 jωj +

∑n−1
2

j=1 (−j)ωn−j . Since ωn = 1, 

we have En(ω) =
∑n−1

2
j=1 j(ωj − ω−j). Note that (ωj − ω−j) = 2i Im(ωj).

Therefore, En(ω) = i
∑n−1

2
j=1 2j Im(ωj). The sum 

∑n−1
2

j=1 2j Im(ωj) must be positive 
since Im(ωj) > 0 for j = 1, 2, . . . , n−1

2 . So En(ω) �= 0. �
Lemma 3.2. Let k be a divisor of n where k �= n. Then En(ωk) �= 0.

Proof. If k = 1, then we are done by Lemma 3.1. For the remainder of the proof assume 
k �= 1. Similar computations to the proof of Lemma 3.1 show that

En

(
ωk

)
= i

n−1
2∑

j=0
2j
(
Im

(
ωkj

))
. (6)

Let nk = l. Then ωk is a primitive lth root of unity. We therefore break up En(ωk) in 
the following way:

En

(
ωk

)
=

k−1
2 −1∑
m=0

i

{ml+ l−1
2∑

j=ml+1

2j Im
(
ωkj

)
+

(m+1)l−1∑
j=ml+ l−1

2 +1

2j Im
(
ωkj

)}

+ i

( k−1
2 )l+ l−1

2∑
k−1

2j Im
(
ωkj

)
. (7)
j=( 2 )l+1
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There are n−1
2 + 1 terms in (6) and n−1

2 = k−1
2 l + l−1

2 . The first summation over m
in (7) gives k−1

2 l+1 terms and the second summation over j accounts for the remaining 
l−1
2 terms. We now show that Im(En(ωk)) > 0.
Notice that −2 Im(ω(m+1)l−z) = 2 Im(ω(m+1)l+z) for z = 1, 2, . . . , l−1

2 .
Moreover, 2 Im(ω(m+1)l+z) > 0 for z = 1, 2, . . . , l−1

2 .
So we have that 2((m + 1)l + z) Im(ω(m+1)l+z) + 2((m + 1)l − z) Im(ω(m+1)l−z) =

2((m + 1)l + z) Im(ω(m+1)l+z) − 2((m + 1)l− z) Im(ω(m+1)l+z) = 4z Im(ω(m+1)l+z) > 0.
This shows that each pair of sums, 

∑(m+1)l−1
ml+ l−1

2
2j Im(ωkj) +

∑(m+1)l+ l−1
2

(m+1)l+1 2j Im(ωkj)
is greater than zero for m = 0, . . . , k−1

2 − 1. Moreover the first sum in En(ωk), which is ∑ l−1
2

j=1 2j Im(ωkj), is also greater than zero. Therefore Im(En(ωk)) > 0 so En(ωk) �= 0. �
Corollary 3.3. For any k = 1, . . . , n − 1, En(ωk) �= 0.

Proof. For any k = 1, . . . , n − 1, ωk is a primitive lth root of unity for some l ∈ Z

which divides n. Assume n
l = k′. Note that k = ak′ where gcd(a, n) = 1. There is an 

isomorphism φ from Q[ωk′ ] to Q[ωk], given by φ(1) = 1 and φ(ωk′) = ωk and extended 
to be a ring homomorphism. If we apply this isomorphism to En(ωk′), we see that 
φ(En(ωk′)) = En(ωk). From Lemma 3.2, En(ωk′) �= 0, so we must have En(ωk) �= 0. �
Theorem 3.4. Let A be the S-circulant matrix defined by aj = j− 1 for 1 ≤ j ≤ n+1

2 and 
an−j+1 = −aj+1 for 1 ≤ j ≤ n − 1. If Z = nA + AJ and E is the all ones matrix, then 
M = Z + n2+1

2 E is a regular classical magic square that is nonsingular.

Proof. By Theorem 2.1 the matrix M has the same eigenvalues as Z except the eigen-
value zero is replaced with 2μ

n . From Corollary 3.3, rank(A) = n − 1. The matrix Z has 
the property that rank(A) = rank(Z). Therefore, rank(M) = n and M is a nonsingular 
classical magic square based on the construction presented in Section 2. �

For explanation, we include the following example.

Example 3.5. If n = 35, the first row of A becomes

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,−17,−16,−15,−14,−13,−12,

−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1].

This A will create a matrix M which is a nonsingular regular classical magic square 
using the process outlined in Section 2.

It is obvious that there are other ways to designate the first row of A that could also 
produce nonsingular regular magic squares. One example would be to negate the first 
row which we defined.
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4. Singular regular magic squares of odd composite order

In [3] it was shown that any first row containing the integers from −n−1
2 through n−1

2
and having the properties that a1 = 0 and aj+1 = −an−j+1 for j = 1, 2, . . . , n − 1 would 
produce a nonsingular regular magic square when n is an odd prime. However, this is 
not true when n is an odd composite.

Let A be an n ×n centroskew S-circulant matrix with first row �b = (b0, b1, . . . , bn−1). 
We use A to create singular regular magic squares when n is an odd composite. To do 
this, we need to assign integers from −n−1

2 through n−1
2 and having the property that 

bj = −bn−j for j = 1, 2, . . . , n such that En(ωk) = 0 for some 1 ≤ k < n where we recall 
as in Section 3 that ω = e

2πi
n and En(x) =

∑n−1
j=0 bjx

j .

Example 4.1. Begin with the example of n = 35 = 5 · 7. Denote the first row of A by 
[b0, . . . , b34]. Examine E35(ω7). Notice that ω7 is a primitive 5th root of unity.

E35
(
ω7) =

34∑
j=0

(
bjω

7j) =
4∑

j=0

( 6∑
i=0

b5i+j

)
ω7j .

Therefore, if each sum 
∑6

i=0 (b5i+j) is zero, then the eigenvalue is zero. Due to the 
fact that bj = −bn−j , there are restrictions on what integers you can assign the bj’s. The 
following two facts follow from these restrictions:

•
∑6

i=0 (b5i+0) must be zero since b0 = 0 and −b5i = b35−5i = b5(7−i).
•

∑6
i=0 (b5i+j) = − 

∑6
i=0 (b5i+(7−j)) since −b5i+j = b35−5i−j = b5(7−i)−j .

For j = 0, 1, 2, 3, 4 denote Bj = {b5i+j : 0 ≤ i ≤ 6}. From the previous facts, if 
b ∈ Bj then −b ∈ B5−j for j > 0. Therefore, if we show that 

∑6
i=0 (b5i+1) = 0 and ∑6

i=0 (b5i+2) = 0, then we have that E35(ω7) = 0.
We simultaneously assign integers into B1 and B2. We begin by placing integers in 

pairs which add to 1. Specifically, we place the numbers 17 and −16 in B1 and 15 and 
−14 in B2. Then we place pairs of integers which add to −1 in each set. To do this we 
place −13 and 12 into B1 and −11 and 10 into B2. After these elements are placed, the 
sum of the four elements is zero, so we must place three more numbers which add to 
zero in B1 and three numbers which add to zero in B2.

All numbers in B1 and B2 have distinct absolute values. So we place their opposites 
in B3 and B4. There are seven unassigned numbers from −17 to 17 not already assigned 
to B1 through B4. Among these are 0 and three pairs of opposite numbers. We put the 
remaining seven numbers in B0. The complete sets B0, B1, B2, B3, and B4 are as follows:

• B0 = {0, 3, 4, 6, −3, −4, −6}
• B1 = {17, −16, −13, 12, 9, −8, −1}
• B2 = {15, −14, −11, 10, 7, −5, −2}
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• B3 = {2, 5, −7, −10, 11, 14, −15}
• B4 = {1, 8, −9, −12, 13, 16, −17}

Therefore, the first row of matrix A is

[0, 17, 15, 2, 1, 3,−16,−14, 5, 8, 4,−13,−11,−7,−9, 6, 12, 10,−10,−12,−6, 9, 7, 11, 13,

−4,−8,−5, 14, 16,−3,−1,−2,−15,−17].

If we do this, then we have 
∑6

i=0 b5i+j = 0 for each 0 ≤ j ≤ 4 and at least two eigenvalues 
of A are zero. Since multiple eigenvalues of A are zero, the regular classical magic square 
M one gets by following the process in Section 2 would be singular.

We may apply a similar labeling to any composite odd number. This is done in 
Lemma 4.2.

Lemma 4.2. Let n = n1n2 where n1 and n2 are odd integers greater than one. 
Then there exists an n × n centroskew S-circulant matrix A such that its first row 
�b = (b0, b1, . . . , bn−1) gives the property that En(ωn2) = 0.

Proof. We have that if ω is a primitive nth root of unity then ωn2 is a primitive n1th 
root of unity. We examine the eigenvalue En(ωn2).

En

(
ωn2

)
=

n−1∑
j=0

(
bjω

jn2
)

=
n1−1∑
j=0

(
n2−1∑
i=0

bn1i+j

)
ωn2j .

Let Bj = {bn1i+j : 0 ≤ i ≤ n2 − 1}, the set of coefficients for ωn2j , for 0 ≤ j ≤ n1 − 1. 
So long as the elements of Bj add to zero for each 0 ≤ j ≤ n1 − 1, then En(ωn2) = 0.

Note that since b0 = 0 and bj = −bn−j we must have two properties on the Bj ’s:

• The elements of B0 sum to zero since bn1i = −bn−n1i = −bn1(n2−i).
• The elements of Bj are the opposite of the elements in Bn1−j for 1 ≤ j ≤ n1 − 1. 

This is due to the fact that bn1i+j = −bn−n1i−j = −bn1(n2−i)−j .

To simplify the notation let m = n−1
2 . Each bj must be an integer between m and −m. 

We construct each Bj for 1 ≤ j ≤ n1−1
2 in the following way.

Into each Bj for 1 ≤ j ≤ n1−1
2 put the elements (−1)i(m − i(n1 − 1) − j + 1) and 

(−1)i+1(m − i(n1−1) − j) for 0 ≤ i ≤ n2−5
2 . When i is even each pair of numbers sum to 

1 and when i is odd the pair of numbers sum to −1. This assignment of elements places 
a total of n2 − 3 elements into each Bj. Moreover if n2 ≡ 1 mod 4 the sum of all n2 − 3
elements placed in Bj thus far is 1. If n2 ≡ 3 mod 4 the sum of all n2−3 elements placed 
in Bj thus far is 0. Therefore the placement of the remaining three elements depends on 
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the value of n2. We break the assignment for the last three elements based on whether 
n2 ≡ 1 mod 4 or if n2 ≡ 3 mod 4.

Case 1: n2 ≡ 1 mod 4

Since n2 ≡ 1 mod 4, the previous n2−3
2 pairs of elements in Bj must sum to 1.

• Into B1 place the elements −(m − (n2−3
2 )(n1 − 1)), (m − (n2−3

2 )(n1 − 1) − 2), and 1
• Into B2 place the elements −(m − (n2−3

2 )(n1 − 1) − 1), (m − (n2−3
2 )(n1 − 1) − 4), 

and 2
• Into B3 place the elements −(m − (n2−3

2 )(n1 − 1) − 3), (m − (n2−3
2 )(n1 − 1) − 7), 

and 3
• Into B4 place the elements −(m − (n2−3

2 )(n1 − 1) − 5), (m − (n2−3
2 )(n1 − 1) − 10), 

and 4
...

• Into Bn1−1
2

place the elements −(m − (n2−3
2 )(n1 − 1) − k), (m − (n2−3

2 )(n1 − 1) −
k− n1−1

2 − 1), and n1−1
2 where k is chosen such that | − (z − (n2−3

2 )(n1 − 1) − k)| is 
the highest value of any elements not previously used in a Bj .

Each triple adds to −1 so that in this case the sum of all elements in each Bj sum to 
zero.

Case 2: n2 ≡ 3 mod 4

Since n2 ≡ 3 mod 4, the previous n2−3
2 pairs of elements in Bj must sum to 0.

• Into B1 place the elements (m − (n2−3
2 )(n1 − 1)), −(m − (n2−3

2 )(n1 − 1)), and −1
• Into B2 place the elements (m − (n2−3

2 )(n1 − 1) − 2), −(m − (n2−3
2 )(n1 − 1) − 4), 

and −2
• Into B3 place the elements (m − (n2−3

2 )(n1 − 1) − 3), −(m − (n2−3
2 )(n1 − 1) − 6), 

and −3
• Into B4 place the elements (m − (n2−3

2 )(n1 − 1) − 5), −(m − (n2−3
2 )(n1 − 1) − 9)

and −4
...

• Into Bn1−1
2

place the elements (m − (n2−3
2 )(n1 − 1) − k), −(m − (n2−3

2 )(n1 − 1) −
k − n1−1

2 ), and n1−1
2 where k is chosen so that | − (m − (n2−3

2 )(n1 − 1) − k)| is the 
highest value of any elements not previously used in a Bj .

Each triple adds to 0 so that in this case the sum of all elements in each Bj sum to 
zero.

In both cases, no integers in B1 through Bn1−1
2

have the same absolute value. There-
fore we may place their opposites in Bn1−1 through Bn1+1

2
. There are n2 remaining 

elements not used in any Bj for j ≥ 1. These elements consist of zero and pairs of oppo-
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site numbers. Place these elements into B0. Therefore, the numbers in B0 must sum to 
zero.

This assignment of bi’s gives the sum of elements in each Bj is zero, namely ∑n2−1
i=0 bn1i+j = 0, therefore En(ωn2) =

∑n1−1
j=0 (

∑n2−1
i=0 bn1i+j)ωn2j = 0. �

Theorem 4.3. Assume that n is a composite positive odd integer and E is the all ones 
matrix. Let Z = nA + AJ where A is an n × n matrix as obtained in Lemma 4.2. Then 
M = Z + n2+1

2 E is a regular classical magic square that is singular.

Proof. Designating the first row of the n ×n matrix A as described in Lemma 4.2 creates 
an S-circulant matrix A which has at least 2 eigenvalues which are zero. This means that 
rank(A) = rank(Z) ≤ n − 2. If we let M = Z + n2+1

2 E then rank(M) ≤ n − 1 so M is 
singular. �
Remark 4.4. There are other assignments to the first row of A that will produce a 
singular M . For example, there are other ways one may permute the elements of the 
Bj ’s to also get zero for each summation of elements in Bj .
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