Overview of Changes in Skull Morphology

<table>
<thead>
<tr>
<th></th>
<th>Ear Bones</th>
<th>Hinge</th>
<th>Jaw Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>3</td>
<td>Sq/D</td>
<td>Dentary</td>
</tr>
<tr>
<td>Early Mammals*</td>
<td>3</td>
<td>Sq/D</td>
<td>Dentary</td>
</tr>
<tr>
<td>Therapsida**</td>
<td>1</td>
<td>2 hinges</td>
<td>several bones</td>
</tr>
<tr>
<td>Pelycosaurs**</td>
<td>1</td>
<td>2 hinges</td>
<td>several bones</td>
</tr>
<tr>
<td>Reptiles</td>
<td>1</td>
<td>Q/Art.</td>
<td>several bones</td>
</tr>
</tbody>
</table>

*Note: Early mammals include: Morganucodonts, Triconodonts, Multituberculates, and Pantotheres

**Note: Therapsida are advanced & Pelycosaurs are primitive mammal-like reptiles. Together they are called Synapsida or synapsid reptiles.
Mammalian Evolution

- Mammal-like Reptile: Order Therapsida (therapsids)
 - 1 ear bone = hyomandibular (or stapes)
 - double jaw hinge on each side

Mammalian Evolution

- Mammal
 - 3 ear bones = stapes, malleus, incus
 - dentary-squamosal jaw hinge
 - malleus originates from reptilian articular; incus originates from reptilian quadrate; stapes from reptilian stapes

Mammalian Evolution

- Mammal
 - 3 ear bones = stapes, malleus, incus
 - ectotympanic = tympanic bullae
Mammalian Evolution

Changes in The Skull

• **Anapsid** skull - no temporal openings or windows
 – primitive reptile design

• **Parapsid** skull - window up high for muscles to pass through
 – marine reptile pattern

Evolution of the middle ear
Changes in The Skull

- **Diapsid** skull - 2 temporal openings for muscle play
 - most reptiles & dinosaurs

- **Synapsid** skull - window down low
 - mammal-like reptiles (synapsids) & mammals

Changes in The Skull

![Pelycosaur vs Mammal]

Why did temporal openings originate?

- Some possibilities:
 1) new attachment points for adductor muscles (e.g., masseter muscles)
 2) skull weight reduction

Mammalian Evolution

- **Generalized Trend in Evolution of Therapsids:**
 1) enlargement of temporal openings
 2) adductor muscles attach to outer surface & zygomatic arch region
 3) secondary palate formation, like mammals (significance?)

![Figure 7. Probabilization in palatal area. Modified from Carroll (1988)]
Mammalian Evolution

- Generalized Trend in Evolution of Therapsids:
 4) heterodont dentition
 5) dentary bone expands...precursor to dentary-squamosal hinge
 6) simplification/fusion of skeletal structure

Mammalian Evolution

- Generalized Trend in Evolution of Therapsids:
 7) elongation of limbs; more slender limbs shifted ventrally
 8) beginnings of endothermy
 9) diaphragm developing (lumbar ribs reduced)

Cynodonts

A Special Group of therapsids...the Cynodonts

- Group of mammal-like reptiles from which mammals evolved
- Retain characteristics of other therapsids:
 1) 1 ear bone
 2) 2 jaw hinges
 3) several jaw bones

- Most mammal-like in anatomical/structural features
Cynodonts

• **Jaw Articulation of Cynodonts**
 - transitional stages of development approaching the classic mammal jaw hinge
 - quadrate-articular & new, second jaw joint (prevention of jaw unhinging/displacement; acts as a bracing point)
 - formation of glenoid fossa (depression in squamosal for articulation) - fits with a lower jaw bone

• **Jaw Articulation of Cynodonts**
 - Enlargement of dentary bone & beginning to form squamosal-dentary articulation; brace point
 - Reduction of postdentaly bones (e.g., articular, quadrate, angular); hearing
Cynodonts

- **Jaw Articulation of Cynodonts**
 - Postdentary bones became smaller and detach from the dentary to be enclosed in a tympanic bulla = beginnings of the mammalian ear with 3 ear bones
 - articular bone = malleus ("hammer")
 - quadrate bone = incus ("anvil")
 - angular bone = tympanic bulla

- **Unique advancement among cynodonts** = new attachment for masseter muscles, i.e., attach along zygomatic arch and lateral surface of dentary = advanced function

Cynodont Dentition Characteristics:
- Beginnings of heterodonty; progresses jaw muscle changes
 - large incisors-canines & small premolars-molars (primitive cynodont)
 - large incisors, canines, premolars, and molars (advanced cynodont & early mammal)
 - premolars & molars not differentiated
Cynodonts

- Cynodont Dentition Characteristics:
 - New teeth erupt between older teeth – continual (~6 generations of replacement)
 - Stage set for molar evolution = tricodont teeth

- Cynodont Skeletal Feature:
 - Lateral flexure of vertebral column

Early Mammals

- Early Mammals (late Triassic-Jurassic):
 - Monophyletic evolution from cynodonts
 - Morganucodonts
 - Triconodonts (ancestors of monotremes)
 - Multituberculates
 - Symmetrodonts
 - Pantotheres (ancestors of marsupials & eutherians)

- Some Advances over Cynodonts:
 1) Increase in brain size = increased hearing/olfaction
 2) Dentary-squamosal jaw hinge (only 1 jaw hinge)
 3) Differentiated premolars & molars - diphyodont teeth, single replacement - indicative of change in reproduction, namely lactation
Early Mammals

• Some Advances over Cynodonts:
 4) fusion of pelvic girdle
 5) dorsoventral flexure of vertebral column - useful in locomotion*
 6) increased neuromuscular control - allowed greater niche separation, e.g., arboreal mammals
 7) endothermy, hair, mammary glands

Early Mammals

• Mammals in the Mesozoic Era: (late Triassic - Jurassic)
 – 1st significant adaptive radiation in early (archaic) mammals
 – Several early radiations from cynodonts, but most are “dead-ends” in evolution
 – We look briefly at the 2 major lines which lead to modern mammals (simplified vs. complex view)

Early Mammals

• Two groups of early mammals:
 1) Morganucodontidae (origin of monotremes)
 • triconodont molars
 – Morganacodonts - early off-shoot in late Triassic
 – Triconodonts
 – Multituberculates - 1st mammal herbivores, disappear in early Tertiary Period
Early Mammals

- Two groups of early mammals:
 2) Kuehneotheriidae (origin of marsupials & eutherians)
 - tribosphenic molars
 - Symmetrodonts - late Triassic to late Cretaceous
 - Pantotheres - late Jurassic, later split into metatheria & eutheria
• Mammals in the Cretaceous Period:
 1) Extinction of dinosaurs
 2) tremendous drift of land masses = numerous island land masses
 – Basic mammal design refined through natural selection
 (speciation derived from predation, competition, geographic
 isolation, coevolution with angiosperms)
 – leads to increased diversity in foraging, reproductive,
 thermoregulation strategies

• Mammals in the Cretaceous Period:
 – Stage set for huge adaptive radiations in mammals during the
 Cenozoic Era

Cretaceous Tertiary

Gondwanaland: 200 Ma
Therapsid Reptiles (Cynodonts)

- X-Morganucodontids
- Prototheria
- X-Triconodonts
- X-Multituberculates
- Monotremes
- X-Symmetrodonts
- X-Pantotheres

Phylogeny of “Perfection”?

- Marsupials
- Metatherians
- Eutherians

- Monotremes
- X-Multituberculates
- X-Pantotheres
- X-Morganucodontids
- Therapsid Reptiles (Cynodonts)

Phylogeny of the Middle Ear

- 1 ear bone
- 2 jaw hinges

- 3 ear bones
- D-S art.

- 3 cusps in row

- ind. 3 ear bones; d-s art.