

- studying animal distributions (animal geography)
- father of animal geography/biogeography
- co-discoverer of theory of natural selection

"...every species comes into existence coincident in time and space with a preexisting closely allied species." (1855)

Zoogeography

- · Studying animal distributions
 - 1) Map distributions
 - 2) Explain distributions

 $\underline{\text{\bf endemic taxon}}\text{\bf :}\ \text{taxon unique to a specific location; found nowhere else}$

Zoogeographic Realms (Faunal_Realms)

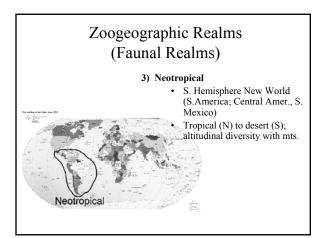
1) Palearctic

- · Largest region
- Includes Europe, north Africa, much of Middle East, most of Asia (except south-southeastern Asia)
- Diverse biomes: polar ice (N) to desert (S)

Zoogeographic Realms (Faunal Realms) 1) Palearctic · 42 mammal families

- - gray wolf, Siberian tiger, caribou, Norway rat, polar bear
- · 0 endemic family

Zoogeographic Realms (Faunal Realms)


2) Nearctic

- Most of North America, Greenland
- Latitudinal biome diversity similar to Palearctic; polar ice (N) to desert & subtropical (S)

Zoogeographic Realms (Faunal Realms)

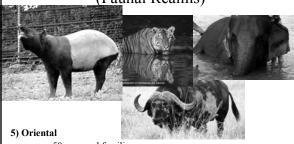
- · 37 mammal families
 - peccary, polar bear, pronghorn antelope, musk ox, porcupine
- 2 endemic family
 - Aplodontidae
 - Antilocapridae)
- *Palearctic & Nearctic collectively called Holarctic Region

- Sloth, howler monkey, tapir, capybara
- 19 endemic families (most of all regions)
 - bats, primates, xenarthrans, rodents

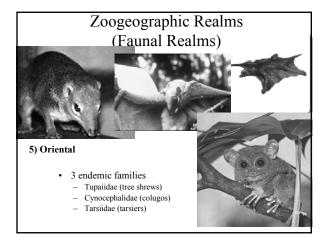
Zoogeographic Realms (Faunal Realms) 4) Ethiopian

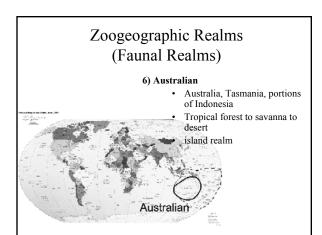
- Madagascar, Africa (except N. Africa), & south tip Middle East
- savanna

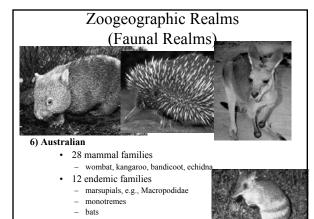
- - mountain gorilla, African elephant, giraffe, aardvark, numerous lemur spp. (Madagascar), many viverrids (civets)
- 17 endemic families
 - Giraffidae
 - Lemuridae


Zoogeographic Realms (Faunal Realms)

5) Oriental


- India, south China, Indochina, portions of Indonesia
- Tropical forest; deserts in western portion




Zoogeographic Realms (Faunal Realms)

- · 50 mammal families
 - Malay tapir, Indian tiger, water buffalo, Indian elephant

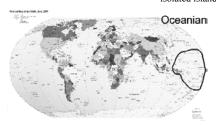
Zoogeographic Realms (Faunal Realms)

6) Australian

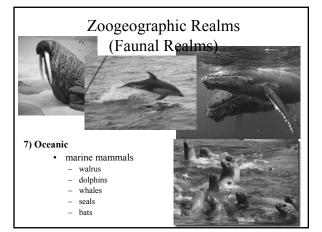
• Endemic species....

Tasmanian Devil
Thylacine (Tasmanian "wolf" or "tiger" – extinct 19th/20th centuries)

Zoogeographic Realms (Faunal Realms)


Wallace's Line

- imaginary line separating Oriental & Australian faunal realms
- Alfred Wallace voyage in area
- Limit of region & provinces noticed because of sharp difference in taxa at boundary
- Borneo & Sulawesi


Zoogeographic Realms (Faunal Realms)

7) Oceanic

 major oceans of Earth & isolated islands (New Zealand)

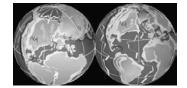
Matrix Comparing Faunal Regions

Region	Per	Percentage of families also found in				
	PA	NA	NT	ET	OR	AU
Palearctic (PA)		46	24	54	76	32
Nearctic (NA)	40		60	25	30	18
Neotropical (NT)	28	81		21	24	18
Ethiopian (ET)	67	35	22		66	32
Oriental (OR)	90	40	24	63		57
Australian (AU)	21	13	10	17	32	

Zoogeography

Continental Drift Theory & Mammals

Continental drift: theory postulating that Pangaea split and resultant land masses drifted over the earth


- 1750's German minister, Lilienthal, coasts with congruent shape
- 1915 Wegener proposed theory of that continents drift
- 1950's DuToit proposed modern view of theory with 1 historic land mass (puzzle fit N.W/O.W.)

Zoogeography 200 MyBP Laurasia 65 MyBP Gondwana

Continental Drift Theory & Mammals <u>Sequence of Events</u>:

- 1) Triassic Period = Pangaea
- 2) Jurassic Period = splitting of Pangaea into N & S land masses = Laurasia & Gondwanaland, respectively

Zoogeography

Cretaceous

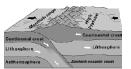
• Continental Drift Theory & Mammals <u>Sequence of Events</u>:

- 3) End of Cretaceous Period = S. America drifts westward breaking from Africa
- 4) Cenozoic Era = continued drift yielding current continental spatial arrangement

Zoogeography

- What caused (causes!) continental drift?
 - sea floor spreading moves tectonic plates of the earth's crust (lithosphere)
 - system of movement of the earth's crust = plate tectonics

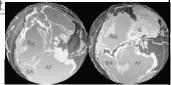
Continental Drift:


Oceanis-oceanis convergence

· How?

- Convection currents cause upswelling of molten material to earth surface (e.g., ocean floor)
- Form chains of underwater volcanic mts. ("spreading ridges")
- New sea floor formed & pushed away from upswelling as new molten material appears

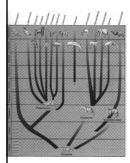
Zoogeography


Continental Drift:

· How?

- At opposite edge of a given tectonic plate plunges back toward earth's core and is destroyed (forms deep troughs or trenches)
- Continental land masses are carried along with this movement at ~5-10 cm per yr

Zoogeography

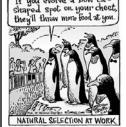


Triassic

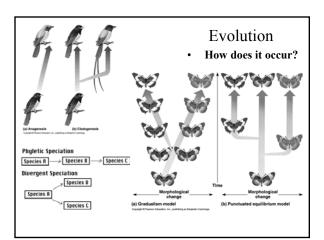
Jurassic

Mammalian Diversity vs. Reptilian Diversity:

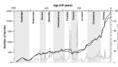
- Key appears to be related to continental drift
- Reptiles evolved when continents more closely connected; may have allowed greater interchange = less diverse


Mammalian Diversity vs. Reptilian Diversity:

Key appears to be related to


continental drift

 Mammals evolved on numerous, isolated land masses
 = more diverse via speciation (i.e., macroevolution)


Evolution

- · What is evolution?
- Microevolution: survival through the inheritance of favorable characteristics
 - mutations
 - selection
- **Macroevolution**: progression of biodiversity through geological time
 - speciation
 - extinction

Evolution

- Species group of potentially interbreeding natural populations capable of producing viable offspring
- Speciation (through reproductive isolation)
 - division of populations (allopatric speciation)
 - barriers to reproduction (sympatric speciation)

Geographical Speciation (Allopatric Speciation) (1) Ancestral Population (No Barrier)

(2) Barrier Appears, Differentiation Starts

(3) Subsequent Differentiation of Populations

(4) Barrier Disappears, Two Non-interbreeding Species are Established

Evolution

Allopatric Speciation

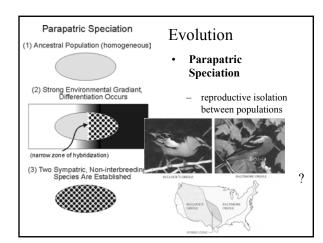
 Geographic separation leads to reproductive isolation

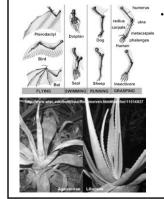
Sympatric Speciation

(1) Ancestral Population (homogeneous)

(2) New Population Appears Within Ancestral Population

(3) Two Sympatric, Non-interbreeding Species Are Established


Evolution


Sympatric Speciation

reproductive isolation within randomly mating population

?

Evolution

- "All life comes from life"
 - Modification of previously existing structures (homologous) – mammal forelimb structure
 - Increasing resemblance of organs or organisms serving the same function (analogous)
 - insect wings vs. bird wings (mimicry)
 - spurges vs. cacti
 - · aloes vs. agaves
 - · via Convergence

ISOLATION AND CONVERGENT EVOLUTION

Convergence

- Myrmecophages

anteaters, aardvark, aardwolf, numbat, pangolins

-		
-		

ISOLATION AND CONVERGENT EVOLUTION

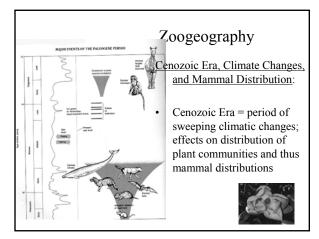
Convergence

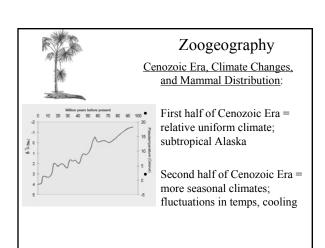
- Cursorial herbivores pronghorn, capybara, guanaco, kangaroos digestive tract, dentition, elongated limbs

ISOLATION AND CONVERGENT EVOLUTION

Convergence

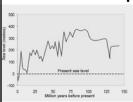
 Fossorial mammals pocket gophers, Palestine mole rats, mole rats reduced eyes, forelimbs, claws, incisors




ISOLATION AND CONVERGENT EVOLUTION

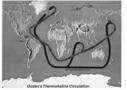
Convergence

- Bipedal, saltatory mammals
kangaroo rats, jerboas, spring hare
long tails, elongated hind feet, richochetal
locomotion



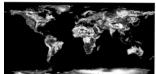
Zoogeography Line of the control of

Why appearance of seasonality?


Cenozoic Era, Climate Changes, and Mammal Distribution:

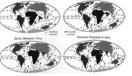
- Some possible explanations:
 - 1) Related to shifting patterns of land & water
 - 2nd half of Cenozoic = withdrawal of many epicontinental seas, e.g., sea subdividing N.Amer. And also in

Zoogeography


Cenozoic Era, Climate Changes, and Mammal Distribution:

Some possible explanations:

- 1) Related to shifting patterns of land & water
 - hotter, drier summers / colder, wetter winters in core of land masses


Zoogeography

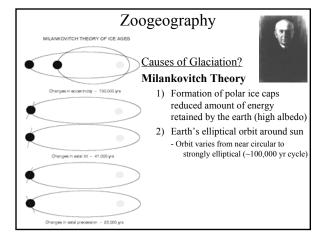
Cenozoic Era, Climate Changes, and Mammal Distribution:

- · Some possible explanations:
 - 2) Also, formation of major world mountain ranges e.g., Rocky Mts. reach present heights in Cenozoic Cascades appear over last 5 million yrs., Himalayas appear in last 2 million yrs.

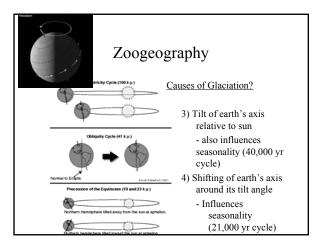
Cenozoic Era, Climate Changes, and Mammal Distribution:

Some possible explanations:

2) Also, formation of major world mountain ranges -collection points for ice & snow; divert wind patterns


Pleistocene Epoch (Ice Ages):

1.5 mybp to 10,000 ybp


- High climatic variability
- Recurring periods of glaciation separated by warm periods (glacial retreat)

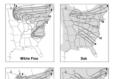
Zoogeography

·		
•		
•		
•		
•		
,		
,		

Glacial Stages in North America

- Kansan ~500,000+ ybp
 Illinoian ~250,000 ybp
 Wisconsinian ~10-12,000 ybp
- General decrease in southward advancement of glaciers from Kansan to Wisconsin Glaciations

Zoogeography

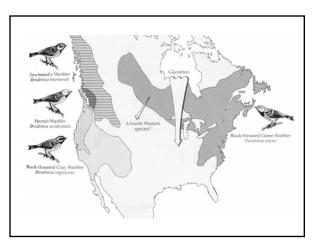

Glacial Stages in North America

Major extinctions of mammals: e.g., North America

elephants musk oxen camels ground sloths giant beavers cave bears saber-tooth cats horses

- But how did species survive the Ice Ages?
 - One hypothesis = species are adapted to certain thermal regimes and habitat types and they should shift their geographic distributions to remain within these evolutionary constraints

Zoogeography


Glacial Stages in North America

- Plant communities shifted geographically with advancing and retreating glaciers
- Mammals followed shifting of plant communities

Musk ox to central France

Caribou to Alabama & Georgia

Glacial Stages in North America

- Southward expansion of boreal mammals during glacial advances
 - Remnants left in refugia

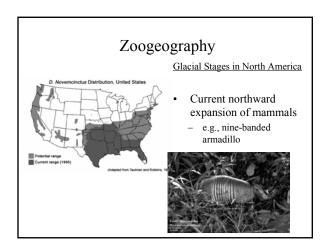
Zoogeography

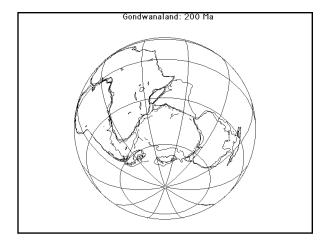
Glacial Stages in North America

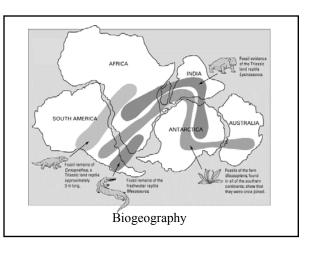
Hippos in Britain

- Northward expansion of subtropical & desert mammals during interglacial periods (glacial retreat)
- Isolation of plant & animal communities contributes to further speciation (natural selection, gene mutations, genetic drift, etc...)
 - e.g., unglaciated regions

Zoogeography


Glacial Stages in North America


- Current northward expansion of mammals
 - e.g., opossum expanding into southern Ontario over the last 10 y



-	STATE OF	-36	
			C
3	4	SEE!	790
	A		

•			
•			
•			
•			
•			
•			
•			
•			
•			
•			
•			

Animal Movements (More on "Ecology of..." to come!)

Dispersal: uni-directional movement; move from place of origin to new area, perhaps colonizing that new area

 Dependent on dispersal ability (vagility/mobility function of body size), presence & kinds of barriers, and tolerance for environmental conditions

Zoogeography

Animal Movements

Migration: round trip movement; move from starting point and later return

Zoogeography

- Faunal Interchange
 - animal exchange between realms/regions...

corridor: path through which animal movement may occur with relative ease

-	

- Faunal Interchange
- animal exchange between realms/regions...

filter route: pathway allowing some animals to move & restricting others from moving through

e.g., mountains, deserts, grasslands, land bridges (continuous land or stepping stone islands)

Zoogeography

filter routes & agricultural land use / habitat fragmentation

Zoogeography

filter route

Beringian land bridge – connects Palearctic to Nearctic

Some mammal families using this route:

Cervidae PA to NA
Felidae PA to PA
Camelidae - NA to PA

filter route

Panamanian land bridge –
connects Nearctic to
Neotropical
Some mammal families using this

Cervidae
Equidae
Camelidae
Cebidae
Erethizontidae

NA to NT

NT to NA

Zoogeography

Faunal Interchange

animal exchange between realms/regions...

sweepstakes route: pathway allowing very few individual animals; large numbers of any animal restricted; animal generally must swim, fly, or raft (oceanic islands)

*could include stepping stone land bridges

Zoogeography

- · sweepstakes route
 - Madagascar = excellent example of sweepstakes route; African mammals dispersing across ocean
