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ABSTRACT 
The effectiveness of our interaction with the computer-

generated environments is subject to our physical limitations in 

real life such as our ability of discriminating differences in 

stiffness or roughness. This ability, represented by Weber 

fractions, is usually quantified by means of psychophysical 

experimentation. The experimentation process is tedious and 

repetitive as it requires the same task to be completed by 

participants until the mastery at a certain stimulus level can be 

ensured before moving onto the next level. Moreover, these 

thresholds are dependent on the tested standard stimulus level 

and, therefore, need to be identified by separate experiments for 

every possible standard stimulus level. The purpose of the 

current study is to reduce the amount of experimentation and 

predict the thresholds for stiffness discrimination of individuals 

after being tested at a single stimulus level. The prediction 

models tested provide a moderate level of prediction power, but 

more features, potentially physical and demographical in nature, 

are needed to increase their effectiveness. The procedure 

described herein can be extended to any modality other than 

stiffness and, therefore, has the potential to predict overall 

palpation effectiveness of an individual after a feasible amount 

of data is obtained through experimentation. 

 

Keywords: Haptics, Virtual Environments, Machine 

Learning, Psychophysics. 

 

1. INTRODUCTION 
We use haptics in our daily lives such as in our smart phones 

and gaming hardware. In addition to these common activities, 

haptics holds an important place in research, education [1-8] and 

design. There are, for instance, simulations that help medical 

professionals practice diagnosis and treatment using palpation in 

veterinary [9], allopathic [10, 11], and osteopathic medicine [12-

14]. Students nowadays have the opportunity to learn by touch—

even by “touching” viruses and protein molecules [15]. 

Therefore, the sense of touch has been and will be in our lives 

more and more as the technological advances make haptics 

interfaces ubiquitous and affordable, especially with a high 

fidelity. 

There are several aspects of touch that we utilize while 

interacting with an object in real life. We receive both cutaneous 

and proprioceptive feedback from our skin, limbs, and joints. 

That information could be acquired from several properties of 

objects such as its roughness, temperature, or stiffness. 

Therefore, discriminating subtle differences in these properties 

potentially makes an individual a better palpator, which is a skill 

that could be learned and improved [16]. This raises the question 

of how we can measure those abilities of someone to 

discriminate temperature or stiffness. The answer lies in 

psychophysics. Psychophysical experiments can quantify the 

cumulative performance of an individual’s physical abilities and 

their performance in interpreting the information they received 

from a physical stimulus. These experiments are tedious and 

involve repetitive tasks through a certain number of trials; 

number of trials may depend on the protocol employed and, in 
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the case of adaptive algorithms, even may vary for each 

participant depending on performance. Another caveat is that the 

outcomes of these types of psychophysical experiments are 

dependent on the “standard” stimulus. That is, the outcome is 

measured relative to a standard stimulus that is presented 

throughout the experimentation. Therefore, in theory, infinitely 

many of these tedious and repetitive experiments on an 

individual must be run to fully comprehend that individual’s 

sensitivity to discriminating differences in a specific modality. If 

we were to consider multiple modalities, this should signify the 

importance of a method that will limit the number of such 

experiments, yet still gives us a confident prediction of the full 

picture. Machine learning has potential to tackle these challenges 

by helping interpolate the outcomes of experiments within a 

certain range of standard stimulus values. 

 In this paper, we investigated a method to apply machine 

learning to predict the ability of individuals to discriminate 

stiffness differences at four different standard stimuli. The data 

used in the study was obtained from a psychophysical 

experiment that was designed to acquire the Weber fractions (the 

ratio of the minimum discriminated stiffness difference between 

two surfaces to the standard stimulus value) of medical students 

for the stiffness discrimination task. In the following sections, 

the methodology, feature selection, and selected model 

performances are presented along with the discussion of the 

results. 

 
2. MATERIALS AND METHODS 

The data used for this study were obtained by means of a 

psychophysics experiment that was designed to measure the 

stiffness discrimination thresholds of individuals. This section 

describes that experiment, the data obtained as they were 

transformed into features for machine learning models, the 

preprocessing of the data (feature selection and preparation), and 

the selected models with the utilized performance evaluation 

metrics. 

 

2.1 Data Collection 
This section details the psychophysics experiment that was 

the source of the data used for prediction. The goal of the 

experiment was to obtain Weber fractions for each participant at 

every tested standard stimulus level (0.25, 0.50, 1.00 and 1.25 

N/mm).   

 

Experimental Setup. The experiments were run on a 2.8 GHz 

dual Pentium PC with 1 GB RAM and an NVIDIA Quadro 

4XGL video adapter. A Geomagic Touch™ (3D Systems, Inc.) 

haptic interface displayed the stiffnesses to the subjects (Figure 

1). The stylus of the haptic device was modified to allow 

manipulation with the index finger of the dominant hand. The 

graphical interface was written using Microsoft Visual C++ and 

the OpenGL® graphic library. The haptic effects were 

implemented by using the OpenHaptics Toolkit (3D Systems, 

Inc.). The calibration curve for the stiffness coefficient set using 

the API and the force-displacement values as read from the 

device was used to render the desired stiffness values.  

 

 

 
 

Figure 1. (A) COMMERCIALLY AVAILABLE 

GEOMAGIC TOUCH™ (3D SYSTEMS, INC.); (B) THE 

MODIFIED VERSION THAT WAS USED IN THE 

EXPERIMENT; THE STYLUS CAN ROTATE ABOUT THE 

AXIS PASSING THROUGH THE POINT A AND SLIDE 

SIDEWAYS (IN AND OUT OF THE PAGE AS SHOWN) 

 

As shown in Figure 2, the user interface was composed of 

two virtual cylinders along with a 20-sec timer display, and some 

other relevant information such as the feedback on the last 

response. The participants, by using the haptic interface, “felt” 

the top portions of the virtual cylinders and were asked to 

identify the stiffer one of these surfaces in 20 seconds for each 

trial. The amount of stiffness difference between the surfaces 

were automatically adjusted by the software based on a 

participant’s performance history as described in the 

Experimental Procedure section. 

 

 
 

Figure 2. VISUAL SCENE OF THE EXPERIMENT. 

 

(B) 

(A) 
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Participants. Thirteen adult subjects (eight female and five 

male) who were second-year osteopathic medical students 

participated in the study. None of the participants had any prior 

known neuromuscular abnormalities. 

 

Experimental Procedure. The stiffness discrimination 

thresholds for each participant were investigated by using four 

different standard stimulus levels: 0.25, 0.50, 1.00 and 1.25 

N/mm. The participants had two weeks to complete all four 

sessions, but they were not allowed to perform more than one 

session at any given day. 

A two-alternative forced-choice (2AFC) method was 

applied by presenting the participants with two surfaces to 

choose from and enforcing a 20-second time limit per trial. After 

the expiration of the 20-sec time limit in a trial, the software 

registered an incorrect answer for that trial. The participants were 

instructed to select the stiffer of the two surfaces and to keep 

performing the same task until the software terminated a session. 

The number of total trials per participant was dependent on the 

individual performance as, behind the scenes, the software used 

an adaptive algorithm to adjust the stimulus level, in our case the 

stiffness difference between the two surfaces. One of the 

surfaces, called the standard  side (STD), had constant stiffness 

(0.25, 0.50, 1.00 or 1.25 N/mm) at any given session and was 

randomly displayed on the left or right, whereas the comparison 

side (CMP) stiffness was adjusted based on the participants’ 

performance, which was always less than the STD stiffness. The 

Wald decision rule [17] was implemented to decide when to 

make a change (increase or decrease) in the stimulus level (i.e., 

the CMP stiffness). Once the decision was made, the amount of 

change (the step size) was calculated by using Parameter 

Estimation by Sequential Testing (PEST) [17, 18]. 

The experimental sessions have ended after seven reversals. 

A reversal was defined as the change of the CMP stiffness in the 

opposite direction (e.g. increase of CMP stiffness after a 

decrease)—the STD stiffness was constant. The average of the 

difference between STD and CMP stiffness values for the last 

four reversals were used to calculate the just-noticeable 

difference (JND). Finally, the Weber fraction at any given 

standard stimulus level was calculated as [19]: 

 

𝑊 =
JND

standard stiffness value
 

 

A higher Weber fraction for a particular standard stiffness 

value implied a higher JND, and, therefore, a reduced level of 

sensitivity to discriminate stiffness differences and vice versa. 

During the experiments, the amount of force applied by the 

participants and the fingertip velocities were also recorded. 

 

2.1 Feature Selection and Data Preparation 
The data collected from the experiment included the 

calculated Weber fractions per session per participant (session 

averages are shown in Figure 3), average palpation force, and 

fingertip velocity values for every trial as read from the haptic 

device. As shown in Figure 4, the average force increased 

monotonically with the standard stiffness level, but the trend was 

not statistically significant. The average velocity was positively 

correlated to Weber fraction with R2 = 0.65 (Figure 5). 

The palpation force and speed (magnitude of the velocities) 

were selected as features for the machine learning 

implementation. The features also included the gender of the 

participants. Due to the data being aggregated over many trials, 

two sets of features (14 features in each) were used to be able to 

potentially capture the individual variety in the amount of force 

and fingertip velocity. Both sets included one-hot encoded 

session numbers since the session number represents the 

standard stimulus level, which affects the Weber fraction 

directly. Another common future for both feature sets was the 

gender that was categorized as 0s and 1s, i.e. (0,1) for male and 

(1,0) for female. Table 1 presents the content details for each 

feature set.  

 

 
 

Figure 3. WEBER FRACTION VS. STANDARD STIFFNESS 

VALUES (MEAN ± STANDARD ERROR) 

 

 

 
 

Figure 4. AVERAGE PALPATION FORCE APPLIED BY EACH 

PARTICIPANT ON THE STANDARD SIDE 
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Figure 5. AVERAGE WEBER FRACTION VS. AVERAGE 

PALPATION SPEED 
 

The main difference between the two feature sets was how the 

palpation force and fingertip velocities were incorporated. In the 

first set, the grand average of all trials in a session were included 

using one-hot encoding. The second feature set included the 

averages of quartiles for each session. Therefore, in the latter 

data set all four columns were populated for both force and 

velocity, whereas in the former set three out of four columns 

were zeros at any given row—the non-zero column’s location 

was depended on the corresponding session. For instance, for the 

session with 0.50 N/mm standard stiffness, the second (out of 

four) column for a participant would be populated with either 

average fingertip velocity or palpation force. All continuous 

features were normalized to eliminate any potential scaling 

effect. 

The labeling data were composed of the Weber 

fractions and they were prepared for both regression and 

classification. In the case of classification, the classes were 

defined based on the nature of the Weber fraction as a 

representation of one’s ability to discriminate stiffness 

differences (higher Weber fraction implies lower sensitivity to 

differences). The Weber fractions were categorized as 1) a 

multiclass classification problem (Above Average (AA); 

Average (A), Below Average (BA)), and 2) a binary 

classification problem (Above Average (AA); Below Average 

(BA)). The categorization for the multiclass classification 

problem was performed by computing the mean (µ) and the 

standard deviation (𝜎) of the Weber fractions for each session. 

In that sense, AA, A, and BA represented individuals with Weber 

fractions greater than µ+ 𝜎, between µ± 𝜎, and less than µ- 𝜎, 

respectively. For binary classification, AA and BA represented 

greater than and less than µ, respectively. For regression 

analysis, the Weber fraction values were not modified in any way 

and continuous.

Table 1. Content of feature sets used for the prediction task. 

Feature Data Type Feature Set 1 Feature Set 2 

Session #1 (0.25 N/mm) Nominal   

Session #2 (0.50 N/mm) Nominal   

Session #3 (1.00 N/mm) Nominal   

Session #4 (1.25 N/mm) Nominal   

Average force for Session #1 Continuous  x 

Average force for Session #2 Continuous  x 

Average force for Session #3 Continuous  x 

Average force for Session #4 Continuous  x 

Average force in the first quartile* Continuous x  

Average force in the second quartile* Continuous x  

Average force in the third quartile* Continuous x  

Average force in the fourth quartile* Continuous x  

Average fingertip velocity for Session #1 Continuous  x 

Average fingertip velocity for Session #2 Continuous  x 

Average fingertip velocity for Session #3 Continuous  x 

Average fingertip velocity for Session #4 Continuous  x 

Average fingertip velocity in the first quartile* Continuous x  

Average fingertip velocity in the second quartile* Continuous x  

Average fingertip velocity in the third quartile* Continuous x  

Average fingertip velocity in the fourth quartile* Continuous x  

Gender (Male) Nominal   

Gender (Female) Nominal   

* The non-zero session number for a given row specifies the corresponding session. 
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2.2 Selected Machine Learning Models and 
Performance Evaluation Metrics 

Four models were selected to be used during performance 

evaluations. These models were KNN-Neighbors [20], Random 

Forest [21], AdaBoost [22], and Logistic Regression [23]. The 

metrics that were used for evaluation were accuracy, recall, 

precision, and F1-macro for the binary classification, and 

accuracy and F1-macro for the multiclass classification. The R2 

metric was used for regression. Each model’s evaluation metric 

was computed using the average of 10-fold cross-validation. 

 

3. PREDICTION RESULTS 
 

This section presents the performance results of the binary 

and multiclass classification tasks to predict the Weber fraction. 

The regression results were extremely poor when the R2 metric 

was considered and, therefore, they are not included in the 

results. The 10-fold cross-validation performance of the four 

models for binary and multiclass classification are presented in 

Tables 2 and 3. 

 

4. DISCUSSION 
 
In this study, we investigated the feasibility of using 

machine learning to predict individuals’ ability to discriminate 

stiffness differences by quantifying that ability as Weber 

fractions. A lower Weber fraction implied higher sensitivity to 

discriminate these differences in the standard stimulus (stiffness 

difference in our case). The motivation behind this study was the 

fact that finding out the Weber fractions by means of only 

experimentation is tedious and costly (participant incentives, 

staff time etc.). Additionally, the Weber fraction is dependent on 

the standard stimulus level tested and, therefore, changes with 

that standard stimulus level. This implies that, for a meaningful 

outcome, every individual would need to go through countless 

experiments to have a confident idea in terms of their abilities to 

discriminate differences in each modality. We can reduce the 

number of such experiments with the help of machine learning. 

The selected machine learning models were evaluated using 

10-fold cross-validation. Several metrics including accuracy, 

recall, precision, and F1-macro were calculated to have a better 

view of the performance. As a result, we see that the Feature Set 

2 yielded better results for both binary and multiclass 

classification. Since the number of features are the same (14) in 

both sets, the difference cannot be simply attributed to the 

dimensionality (curse of dimensionality [24] etc.). The main 

difference between the two feature sets we considered was the 

resolution of the forces and fingertip velocities into quartiles. 

The Feature Set 2 included the averages of the quartiles, i.e. first 

quartile, second quartile etc. Even though there was no 

statistically significant difference between these quartiles, they 

may have provided more insight into the session data for the 

models to interpret. 

There was not an obvious difference between the binary and 

multiclass classification. Multiclass classification enabled finer 

specification—three classes as compared to two in binary 

classification—of individuals’ ability, but it suffered from 

imbalanced classes. Both Above Average (AA) and Below 

Average (BA) classes were ~33% of the Average (A) class. The 

Synthetic Minority Oversampling Technique, or SMOTE [25], 

and random oversampling were applied to the data, but that 

revealed inferior results. 

One of the limitations of this study was the sample size. Due 

the aforementioned challenges with experimenting, this was an 

expected shortcoming. We are, however, still working on adding 

more data points to improve the outcome of the models. Another 

limitation was the fact that the data was drawn from second year 

osteopathic medical students. At this stage, these students are 

still working on developing their palpation skills via practice in 

labs and internships. This may have caused some variation in the 

data that may not have been present if their skills were fully 

developed. Therefore, increasing the participant numbers and 

drawing participants from different populations may yield better 

prediction and generalization of the results. 

As future work, we are working on adding more relevant 

features (mostly anatomical in nature) such as age, 

anthropometric data (length of the finger digits, forearm, and 

elbow-to-shoulder distance etc.), and other performance 

parameters (proprioceptive acuity, reaction time, fingertip 

sensitivity etc.).  We also plan to expand the set of appropriate 

machine learning models tested to investigate the effect of model 

selection. 

Table 2. Binary classification performance of the tested models (10-fold cross-validation). 

Model Feature Set 1 Feature Set 2 
 Accuracy Recall Precision F1-macro Accuracy Recall Precision F1-macro 

KNN Neighbors 0.60 0.63 0.67 0.58 0.71 0.77 0.74 0.68 

Random Forest 0.70 0.80 0.69 0.65 0.71 0.83 0.72 0.65 

AdaBoost 0.59 0.67 0.58 0.50 0.72 0.73 0.74 0.68 

Logistic Regression  0.66 0.83 0.68 0.60 0.68 0.87 0.72 0.58 
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Table 3. Multiclass classification performance of the tested models (10-fold cross-validation). 

Model Feature Set 1 Feature Set 2 
 Accuracy F1 macro Accuracy F1 macro 

KNN neighbors 0.60 0.29 0.71 0.44 

Random Forest 0.64 0.36 0.64 0.38 

AdaBoost 0.64 0.30 0.65 0.32 

Logistic Regression  0.66 0.31 0.66 0.36 

 

5. CONCLUSION 
 
We investigated a methodology to overcome some of the 

challenges of psychophysical experimentation by using 

machine learning. This methodology can be applied to any 

modality, but the feature selection, as shown from the results, 

plays an important role as anticipated. The expansion of 

features that will improve the performance metrics of the 

models is important. The potential limitations of the study were 

the limited sample size, associated imbalanced classes, and 

specific population from which the data were drawn. 
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