<table>
<thead>
<tr>
<th>Title</th>
<th>Parameter estimation and investigation of the t-ratio in determining the presence of multicollinearity in a regression model</th>
</tr>
</thead>
</table>
| Authors | Adebayo Agunbiade
Olabisi Onabanjo University, Nigeria
Peter Ogunyinka
Olabisi Onabanjo University, Nigeria |
| E-mail | bayoagunbiade@gmail.com |
| Session ID | Name
S8: Modeling II
October 11
S8-1: 4:00 pm – 4:20 pm
Three Fires Room |

Multicollinearity is one of the most misunderstood problems in multiple regression analysis. The main thrust of this paper is in the parameter estimation and investigation of the sufficiency and adequacy of the t-ratios only to confirm the presence of multicollinearity in a regression equation. To achieve this, a three-equation simultaneous model with three multicollinear exogenous variables is presented. Monte Carlo simulation indicates that the asymptotic results provide a better estimate with the Variance Inflation Factor. It was established that the criteria considered will suffice and not just the t-ratio only in determining the presence of multicollinearity.

<table>
<thead>
<tr>
<th>Title</th>
<th>Regression analysis with errors from epsilon skew double inverted Weibull distribution</th>
</tr>
</thead>
</table>
| Authors | Flaih Ahmad
Al Qadisiyah University, Iraq
Hassan Elsalloukh
University of Arkansas at Little Rock, AR, USA |
| E-mail | anflaih@ualr.edu, hxelsalloukh@ualr.edu |
| Session ID | Name
S1: Modeling I
October 11
S1-2: 10:00 am – 10:20 am
Ojibway Room |

In this paper we develop regression analysis when the random errors term are from the Epsilon Skew Double Inverted Weibull (ESDIW) distribution which generalized the Double Inverted Weibull (DIW) distribution. ESDIW distribution is a skewed density belonging to the Epsilon Skew Exponential Power (ESEP) family of distributions. We derive the parameter estimation of the ESDIW regression model utilizing the methods of least squares and the maximum likelihood. Also, we provide real data analysis.

<table>
<thead>
<tr>
<th>Title</th>
<th>Likelihood estimation with partially observed array variate observations</th>
</tr>
</thead>
</table>
| Authors | Deniz Akdemir
Cornell University, NY, USA |
| E-mail | da346@cornell.edu |
| Session ID | Name
S15: Distribution and Inference II
October 12
S15-3: 4:40 pm – 5:00 pm
Ojibway Room |

Missing data is an important challenge with high-dimensional data arranged in the form of an array. In this paper, we propose a probability model for partially observed multiway array data. Fisher scoring and expectation maximization are used for estimation of the parameters of this distribution and for imputation of missing cells.

<table>
<thead>
<tr>
<th>Title</th>
<th>The Kumaraswamy-geometric distribution</th>
</tr>
</thead>
</table>
| Authors | Alfred Akinsete
Marshall University, WV, USA |
| E-mail | akinsete@marshall.edu |
| Session ID | Name
S3: Distribution I
October 11
S3-3: 11:50 am – 12:10 pm
Ojibway Room |
This work defines and studies the Kumaraswamy-geometric distribution, a member of the T-geometric family of discrete distributions. Some properties of the Kumaraswamy-geometric distribution such as moments, probability generating function, hazard and quantile functions are studied. The method of maximum likelihood estimation is proposed for estimating the model parameters. Tests are proposed to compare the distribution with another existing member of the T-geometric family of discrete distributions. A real data set is used to illustrate the applications of the Kumaraswamy-geometric distribution.

Title: Statistical coding theory and digital communications
Authors: Abdinur Ali
Norfolk State University, VA, USA
Mushtaq Khan
Norfolk State University, VA, USA
E-mail: amali@nsu.edu
Session ID: Name Date Time Location
S13: Application III October 12 S13-2: 3:05 pm – 3:25 pm Ojibway Room

Codes are used to detect or correct errors in digital communications. There is always a chance that the data can be corrupted and the data have to be repaired. The goal of coding theory is to make the probability of error as small as possible. However, if the data is infected or deleted, the coding will help us to recover the original data. In this talk we will explain Cyclic and Convolutional codes. For Convolutional codes, we will examine probability based codes. In particular, we will describe sequential decoding and how to estimate error probabilities for optimum decoding algorithms.

Title: T-normal family of distribution: A new approach for generalizing the normal distribution.
Authors: Ayman Alzaatreh
Austin Peay State University, TN, USA
Carl Lee and Felix Famoye
Central Michigan University, MI, USA
E-mail: alzaatreha@apsu.edu
Session ID: Name Date Time Location
S11: Distribution III October 12 S11-3:11:50 am – 12:10 pm Ojibway Room

The idea of generating skewed distributions from normal has been of great interest among researchers for decades. The initial work by Azaalini (1985) on skew normal distributions has motivated researchers in developing general or different approaches to generate skew normal distributions. In this paper, a technique proposed in Alzaatreh, Lee & Famoye (2013) is used for generating the T-normal family of generalized normal distributions. Comparisons of this method and existing methods suggest that many existing methods can be derived using this framework. Some general properties including moments, mean deviations and Shannon entropy of the T-normal family are studied. Some new generalizations of the normal distribution, which are members of the T-normal family, are presented. Some members of the T-normal family of distributions, namely, exponential-normal, exponentiated-exponential-normal and Weibull-normal distributions are studied in detail. Some applications of these generalized normal distributions are provided to illustrate their flexibility.

Title: Generating high-tailed distributions through convolution of characteristic functions
Authors: Mohamed Amezziane
Central Michigan University, MI, USA
Wesley Wieczorek
Zurich-North America, IL, USA
E-mail: amezz1m@cmich.edu
Session ID: Name Date Time Location
S15: Distribution and Inference II October 12 S15-2: 4:20 pm - 4:40 pm Ojibway Room
The condition of moments existence requires that the skewness and kurtosis of any distribution cannot exist outside a parabola. Since the 19th century, statisticians have been trying to come up with flexible families of distributions that would cover as much as possible of the area inside the skewness-kurtosis parabola using as few shape parameters as possible. In this work, we propose a simple method of generating flexible distributions through convolution of smooth and rough characteristic functions or equivalently, multiplication of high-tailed and low-tailed density. We conduct a performance comparison with existing high-tailed skewed distributions and illustrate the flexibility of the new distributions by analyzing financial data.

<table>
<thead>
<tr>
<th>Title</th>
<th>Application of binomial distribution with a shift parameter in one sample parametric test statistics</th>
</tr>
</thead>
</table>
| Authors | Kayode Ayinde
Ladoke Akintola University of Technology, Nigeria |
| E-mail | kayinde@lautech.edu.ng | | |
| Session ID: Name | Date | Time | Location |
| S15: Distribution and Inference II | October 12 | S15-1: 4:00 pm – 4:20 pm | Ojibway Room |

Semi-parametric and parametric statistical test statistics are often used to test hypothesis in one-sample problems. The paper provides the equivalent rank version of the parametric tests. It further develops and proposes an alternative semi-parametric test statistic in its distributional and asymptotic form to test hypothesis about one sample problem. The proposed test statistic involves averaging the ranks of the first P observations closest to the test value. It is a Binomial Distribution with a shift parameter. It is not influenced by population and sample sizes and the parametric statistical test of variability reduces to a test of location. A Monte Carlo experiment of 50,000 trials was conducted on the parametric and the proposed semi-parametric test statistics. Their type 1 error rates, sensitivity and specificity study as well as the agreement measures (the Kappa and Tau Statistics) between the parametric and the proposed statistics were examined. The paper identifies the value of P at which the error rate is considerably acceptable and further reveals that the proposed statistics performs well with the parametric test statistics in term of sensitivity. The performances of the test statistics based on specificity and agreement measures are generally moderate. The methodologies involved in using the proposed statistics are easier and simpler. Numerical examples illustrate the usage of the proposed statistics.

<table>
<thead>
<tr>
<th>Title</th>
<th>Comonotonic lower convex order bound approximations for the sum of log unified skew normal random variables with applications in finance and insurance</th>
</tr>
</thead>
</table>
| Authors | Mohammad Aziz
University of Wisconsin-Eau Claire, WI, USA
Arjun Gupta
Bowling Green State University, OH, USA |
| E-mail | azizm@uwec.edu | | |
| Session ID: Name | Date | Time | Location |
| S3: Distribution I | October 11 | S3-1: 11:10 am – 11:30 am | Ojibway Room |

The classical works in finance and insurance for modeling asset returns is the Gaussian model. However, when modeling complex random phenomena, more flexible distributions are needed which are beyond the normal distribution. This is because most of the financial and economic data are skewed and have "fat tails". In this study, we consider a very flexible financial model to construct comonotonic lower convex order bounds in approximating the distribution of the sum of dependent log skew normal random variables. The dependence structure of these random variables is based on the unified skew-normal distribution. Accurateness of the approximation is also investigated numerically. Results obtained from our methods are competitive with those obtained from Monte Carlo method.

<table>
<thead>
<tr>
<th>Title</th>
<th>Statistical Forecasting: Analytical Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Dila Ram Bhandari,</td>
</tr>
</tbody>
</table>
Three-dimensional rotation data are common in areas such as materials science and human kinematics, yet distributions for these data that are easily accessible to practitioners are limited. Based on an intuitive, geometric construction, development of distributions for modeling three-dimensional rotation data will be discussed. These distributions provide advantages such as easily interpretable parameters and flexibility in modeling. Inference for these distributions will be considered, along with applications in which these distributions are useful.

In this talk we consider power distributions for modeling proportions or rates with zero and/or one inflation as an alternative to beta regression. The model considered is a mixture between a Bernoulli type process for explaining the zero and/or one excess and a limited power-normal model (Pewsey, Gomez and Bolfarine, Test, 2012) for explaining the continuous response. The maximum likelihood approach is considered for parameter estimation.

Statistics plays a vital role in every fields of human activity. The statistical tools like index number, correlation, time series analysis, regression analysis, hypothesis testing, and multivariate analysis help to analyze data and predict about future. Forecasting is the process of making statements about events whose actual outcomes have not yet been observed. Statistical forecasting concentrates on using the past to predict the future by identifying trends, patterns and business and economic drive within the data to develop a forecast with tools as regression analysis, time-series analysis and many more. Estimating the likelihood of an event takes place in the future, based on available data. Statistics is a set of techniques that are used in collecting, analyzing, presenting, and interpreting data. Statistical methods are used in a wide variety of occupations and help people identify, study, and solve many complex problems. Statistics is also widely used in the business and economic world. In many forecasting processes, statistical forecasting forms the baseline that is adjusted throughout the process. Risk and uncertainty are central to forecasting and prediction; it is generally considered good practice to indicate the degree of uncertainty of forecasts.
Ranked set sampling (RSS) is applicable whenever ranking of a set of sampling units can be done easily by a judgment method or based on the measurement of an auxiliary variable on the units selected. In this work, different modifications of RSS such as extreme ranked set sampling, moving extreme ranked set sampling and ordered extreme ranked set sampling are considered. These modifications of RSS are applied to obtain estimators of parameters associated with the distribution of the study variate Y, based on the ranked set sample in which an auxiliary variable X correlated with Y is used to rank the sample units, when (X,Y) follows certain well known bivariate distributions such as bivariate Pareto distribution and Morgenstern type bivariate exponential distribution are obtained.

Title: Fitting a piecewise exponential model for the reliability of repairable systems using hierarchical Bayesian approaches.

Authors: Arpita Chatterjee
Georgia Southern University, GA, USA
Alan Polansky
Northern Illinois University, IL, USA
E-mail: achatterjee@georgiasouthern.edu

This research develops methods for Bayesian analysis of a general piecewise exponential model for the reliability of multiple repairable systems. Common approaches to this problem model the expected time between failures using a geometric type sequence. In this research we consider generalizing this model, so that the expected time between failures is a monotone sequence. The model is then fit using hierarchical Bayesian approaches. The ordering of the mean time between failures is implemented into the model by considering prior distributions on the ordered subset of the parameter space. We also consider model selection problems concerning the validity of the monotonicity of the expected time between failures as well as the validity of a common parametric model for the monotone sequence. The methods are demonstrated on a well-known example concerning the reliability of mining equipment.

Title: Bayesian estimators of the lognormal-Pareto composite distribution

Authors: Chin-I Cheng and Kaladawala Cooray
Central Michigan University, MI, USA
E-mail: cheng3c@cmich.edu

In this paper, Bayesian methods with both Jeffreys and conjugate priors for estimating parameters of the lognormal-Pareto composite distribution are considered. With Jeffreys prior, the posterior distributions for parameters of interest are derived and their properties are described. The conjugate priors are proposed and the conditional posterior distributions are provided. In addition, simulation studies are performed to obtain the upper percentage points of Kolmogorov-Smirnov and Anderson-Darling test statistics. Furthermore, these statistics are used to compare Bayesian and likelihood estimators. In order to clarify and advance the validity of Bayesian and likelihood estimators of the lognormal-Pareto composite distribution, well-known Danish fire insurance data set is reanalyzed.

Title: Nonparametric bootstrap estimation for ruin probabilities in the Cramer-Lundberg model

Authors: Sunghoon Chung
Central Michigan University, MI, USA
Ronald Butler
Southern Methodist University, TX, USA
E-mail: chung2s@cmich.edu

In this paper, the Cramer-Lundberg model is considered, and the ruin probability is estimated using a nonparametric bootstrap method. The method is applied to real-world data to illustrate its effectiveness.
We consider bootstrap inference implemented in the transform domain with the use of saddlepoint approximations. In this context, inference concerns ruin probabilities in Cramer-Lundberg models using data comprised of claim amounts and interarrival times for claims. Indirect inference is made possible through the Laplace transform for ruin probabilities which is an explicit function of the moment generating function for the distribution of claims and the interarrival rate. Simulations show that the proposed bootstrap estimators are more accurate than existing estimation methods for small and moderate amounts of initial capital. Bootstrap pointwise confidence bands exhibit very accurate coverage for all initial capitalization amounts.

Optimal supersaturated designs and applications

Authors
Ashish Das
Indian Institute of Technology, India

E-mail
ashish@math.iitb.ac.in

Session ID: Name	Date	Time	Location
S5: Application II | October 11 | S13-1: 2:45 pm – 3:05 pm | Ojibway Room

A popular measure to assess 2-level supersaturated designs is the $E(s^2)$ criterion. With an objective to construct 2-level supersaturated designs with even or odd number of runs which have minimum $E(s^2)$, improved or more explicit lower bounds on $E(s^2)$ are used to show optimality properties of supersaturated designs. Conditions for supersaturated designs which attain the lower bounds are given. Hadamard matrices and finite fields are used for constructing $E(s^2)$-optimal supersaturated designs. The lower bound is improved when the number of factors is large, and designs attaining the improved bounds are constructed by using the complements of designs with small number of factors. A method is provided to construct $E(s^2)$-optimal supersaturated designs with odd number of runs from $E(s^2)$-optimal supersaturated designs with even number of runs by deleting a run.

Analysis of lifetime data for distributed systems subject to shared (hidden) risks by means of generalized multivariate model

Authors
Papadimitriou Dimitrios
INTEC - Ghent University, Belgium

E-mail
dimitrios.papadimitriou@ugent.be

Session ID: Name	Date	Time	Location
S14: Distribution IV | October 12 | S14-1: 2:45 pm – 3:05 pm | Three Fires Room

We examine the lifetime data of distributed systems that are subject to simultaneous failures involving multiple system components by means of a generalized statistical model. Analyzing their behavior is of critical importance to model the robustness and reliability properties of such systems. The main difficulty arises from the absence of information on the underlying common cause(s) of failures risking to affect simultaneously multiple components. Moreover, the spatial distribution of components sharing common risks is not directly derivable from the individual rate of failure occurrence observed for each component taken separately; hence, the interdependence between simultaneously failing components (joint failure events) requires the introduction of generalized multivariate distribution.

The ALM distributions and their use in applied probability modeling

Authors
Boyan Dimitrov
Kettering University, MI, USA

E-mail
bdimitro@kettering.edu

Session ID: Name	Date	Time	Location
S13: Application III | October 12 | S13-3: 3:25 pm – 3:45 pm | Ojibway Room

A new class of probability distributions, called Almost-Lack-of-Memory (ALM) distributions was recently developed. These distributions suit environmental modeling, the modeling of risk processes in finances, insurance, techniques, services, politics, and social sciences. The author’s works and works of followers and collaborators during latest 20 years formed an impressive collection of various results. The successful reflection of these topics in research literature and the interest of the young auditorium encourage me to present the most important achievements and perspectives of these distributions in today’s scientific society.
We develop Bayesian analysis for the linear regression model with exponential power errors. Specifically, we derive explicit expressions for several objective Bayes priors for the model parameters. Further, for each of these objective Bayes priors we discuss the propriety of the implied posterior distributions. Finally, we illustrate the use of these objective Bayes priors with applications of the exponential power regression model to two real datasets.

Weighted distributions (univariate and bivariate) have received a widespread attention over the last two decades because of its flexibility to analyze skewed data. In this paper, we focus our attention on a new class of bivariate and multivariate family of exponentiated-exponential distributions using the technique by Arnold, Ghosh and Alzaatreh (2013). Several structural properties of the bivariate weighted exponentiated-exponential distribution including moments, total positivity of order two and estimation of the model parameters are studied. Some properties of the multivariate extension of the proposed model are also discussed. For illustrative purposes, one data set is analyzed.

Consider a sequence $X_n, n = 1, 2, \ldots, d$ of i.i.d. uniform random variables taking values in the alphabet set \{1, 2, ..., d\}. A k-superpattern is a realization of $X_n, n = 1, 2, \ldots, t$ that contains, as an embedded subsequence, each of the (ordered Bell number of) non-order-isomorphic subpatterns of length k. We focus on the (non-trivial!) case of $d=k=3$ and study the waiting time distribution of $\tau = \inf\{t \geq 7: X_n, n = 1, 2, \ldots, t$ is a superpattern}. In particular, the moments, generating function, and probability mass function are derived, and comparisons are drawn to runs distributions and waiting time distributions for omnisequences.

Simulating continuous univariate and multivariate non-normal distributions based on the method of L-moments and L-comoments

Authors Todd Headrick
Southern Illinois University, IL, USA

E-mail headrick@siu.edu

Session ID: Name Date Time Location
S12: Inference and Simulation October 12 S12-3: 11:50 am – 12:10 pm Three Fires Room
Conventional product-moment-based algorithms are often used for generating continuous univariate or multivariate non-normal distributions associated with simulation studies. However, conventional product-moment estimates can be substantially biased or have high variance. As such, characterizations of several conventional moment-based algorithms by L-moments (comoments) are introduced. Specifically, algorithms associated with the (i) power method, (ii) double generalized lambda, (iii) Tukey g-and-h, and (iv) Schmeiser-Deutsch families of distributions are presented for the purpose of simulating non-normal distributions with specified values of L-skew, L-kurtosis, and L-correlation. It is demonstrated how L-moment estimators are superior to their corresponding conventional moment estimators in terms of bias and efficiency.

Title: On the quantum Zeno effect and time series
Authors: Kei Inoue
Tokyo University of Science, Yamaguchi, Japan
Karl-Heinz Fichtner
Friedrich Schiller University Jena, Germany
E-mail: inoue@ed.yama.tus.ac.jp
Session ID: S13: Applications III
Date: October 12
Time: 2:45 pm – 3:05 pm
Location: Ojibway Room

Measuring a stochastic process at different times one gets a so called time series representing the random outputs of the measurements. We describe the distribution of such a time series if the underlying process is given by a unitary time evolution of a quantum system. Further, a certain quantum version of Zeno's arrow paradox is considered.

Title: On confidence interval estimators of multilevel attributable risk in cross-sectional studies
Authors: Khairul Islam
Eastern Michigan University, MI, USA
E-mail: mislam4@emich.edu
Session ID: S10: Statistical Inference
Date: October 12
Time: 10:20 am – 10:40 am
Location: Three Fires Room

A simpler expression of the asymptotic variance for a multilevel attributable risk (AR) is derived and utilized for constructing confidence interval estimates of AR. We compare confidence interval estimators of AR using Wald statistic, log-transformation, logit-transformation and quadratic equation. As an alternative to the asymptotic approach, the boot-strap versions of such estimators are also considered which relieve practitioners of AR from using complicated asymptotic expressions from the delta method. A Monte Carlo simulation from specified multinomial distribution is considered to assess the finite sample performance of these intervals in terms of the coverage probability and the length of intervals.

Title: Robust estimation and fitting of reduced rank spatial model to large data sets
Authors: Casey Jelsema
NIH/NIEHS, NC, USA
Rajib Paul and Joseph McKean
Western Michigan University, MI, USA
E-mail: jelsema.casey@gmail.com
Session ID: S1: Modeling I
Date: October 11
Time: 10:20 am – 10:40 am
Location: Ojibway Room

Reduced rank spatial models (RRSM) are popular in modeling spatial covariances for large spatial datasets. Methods of estimation such as EM algorithm and the current Method of Moments are susceptible to departures from the Normal distribution. We propose a modified MOM method; an empirical binned covariance matrix is constructed using the median absolute deviation and the L1 norm. The consistency of the proposed estimates is demonstrated theoretically and through simulation. The method is applied on remote sensing data obtained from NASA. Results show that the proposed method reduces the variability associated with kriging estimates in the presence of contaminated data.
<table>
<thead>
<tr>
<th>Title</th>
<th>Inference for multivariate time-varying coefficient regression models</th>
</tr>
</thead>
</table>
| Authors | Jiancheng Jiang and Yi Liu
University of North Carolina - Charlotte, NC, USA |
| E-mail | jiijang1@uncc.edu | | |
| Session ID: Name | Date | Time | Location |
| S8: Modeling II | October 11 | 4:20 pm – 4:40 pm | Three Fires Room |

In this talk we propose a multivariate time-varying coefficient regression model to fit vector time series data. The local linear smoother is employed to estimate the unknown coefficient matrices. Asymptotic normality of the proposed estimators is established. Several practical problems such as bandwidth selection are also considered.

To test if commonly used vector AR models are appropriate for fitting a specific dataset, we develop the generalized likelihood ratio (GLR) test. Under the null models, the newly proposed GLR statistics is asymptotically represented as a weighted sum of rescaled chi-squared random variables, with the scaling constants and the degrees of freedom independent of the nuisance parameters. Simulations are conducted to demonstrate the performance of the proposed estimation and the Wilks phenomenon and the power of the test. A real data example is used to illustrate the value of the proposed methodology.

<table>
<thead>
<tr>
<th>Title</th>
<th>Detection of multivariate outliers using a cluster-based approach</th>
</tr>
</thead>
</table>
| Authors | Marcus Jobe
Miami University, OH, USA
Michael Pokojovy
University of Konstanz, Germany |
| E-mail | jobe1jm@cmich.edu | | |
| Session ID: Name | Date | Time | Location |
| S4: Applications I | October 11 | 11:30 am – 11:50 am | Three Fires Room |

Several outliers within a multivariate data set of interest significantly reduce the detection power of Hotelling’s T^2 statistic. This reduction in detection power is typically referred to as masking. We propose a computer-intensive cluster-based approach that incorporates a reweighted version of Rousseeuw’s minimum covariance determinant method with a multi-step cluster-based algorithm that initially filters out potential masking points. Compared to the most robust procedures, simulation studies show that our new method is better for outlier detection. Real data comparisons are presented.

<table>
<thead>
<tr>
<th>Title</th>
<th>Maximizing leave-one-out likelihood for the location parameter of unbounded densities</th>
</tr>
</thead>
</table>
| Authors | Wallin Jonas
Lund University, Sweden
Podgórski Krzysztof
Lund University, Sweden |
| E-mail | wallin@maths.lth.se | | |
| Session ID: Name | Date | Time | Location |
| S10: Statistical Inference | October 12 | 9:40 am – 10:00 am | Three Fires Room |

In this work, we propose an approach to estimation of the location parameter for a density that is unbounded at the mode. The estimator maximizes a modified likelihood in which the singular term in the full likelihood is left out, whenever the parameter value approaches a neighborhood of the singularity location. We show that the estimator is consistent and super-efficient for the class of distributions that we consider, which includes the generalized asymmetric Laplace distribution (Variance Gamma).

<table>
<thead>
<tr>
<th>Title</th>
<th>Recent developments on the construction of bivariate distributions with fixed marginals</th>
</tr>
</thead>
</table>
| Authors | Gwo Dong Lin
Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C. |
| E-mail | gdlin@stat.sinica.edu.tw |
| Session ID: Name | Date | Time | Location |

Since the 1930s it has been a challenging problem to construct a bivariate distribution with given marginals and correlation. Despite the fact that much effort has been devoted to this problem, for example, many relevant conference proceedings or monographs have been published in the past three decades, it still continues to be an active topic nowadays. In this survey paper we will simply focus on the recent developments on the FGM-related distributions and their generalizations including Sarmanov’s distributions, Baker’s distributions and Bayramoglu’s distributions. This complements the most recent works: the review paper by Sarabia and Gomez-Deniz (2008, SORT) and the book by Balakrishnan and Lai (2009, Springer). It turns out that the most convenient unified approach to the problem is probably by way of a linear combination of the joint distributions of bivariate order statistics.

HIV dynamic model offers another perspective of studying pathogenesis of HIV infection and developing treatment strategy, other than laboratory experiments and clinical research. In this article, we propose a method that combines local polynomial mixed effect smoothing and Stochastic Approximation EM (SAEM) method for parameter estimates. We use the adapted method to investigate the effect of below detection data on parameter estimate for the time varying HIV dynamic model. The results show a distinct picture by taking into account censoring mechanism. The severity of HIV infection seems to be underestimated by model without considering censoring.

In this paper we derive two types of bivariate Polya-Aeppli distributions. For the Type I, we use the bivariate Poisson distribution obtained by the trivariate reduction method and compound it with a geometric distribution. Type II bivariate Polya-Aeppli distribution is a compound Poisson distribution with bivariate geometric compounding distribution. We then discuss a number of properties of these distributions including the probability generating function, correlation structure, probability mass function, recursive relations, and conditional distributions. The generating functions of the tail probabilities are also obtained.

Bayesian multistate chronic disease, dynamic modelling: An application to a South African rheumatoid arthritis diseased cohort.

In this paper we derive two types of bivariate Polya-Aeppli distributions. For the Type I, we use the bivariate Poisson distribution obtained by the trivariate reduction method and compound it with a geometric distribution. Type II bivariate Polya-Aeppli distribution is a compound Poisson distribution with bivariate geometric compounding distribution. We then discuss a number of properties of these distributions including the probability generating function, correlation structure, probability mass function, recursive relations, and conditional distributions. The generating functions of the tail probabilities are also obtained.
The primary goal of this article is to model the forces (rates) of recovery, relapse and mortality for patients started on rheumatoid arthritis (RA) standard treatment and the effect of adjusting for covariates. Bayesian based four state markov models were fit to the data adjusting for several explanatory variables to assess their effect to the forces of recovery and/or relapse. We employed generalised additive mixed models (GAMMs) which utilise nonparametric functions capable of handling complex data structures. Bayesian based GAMMs easily handle data which are; over-dispersed, auto-correlated, clustered, nested, hierarchical, spatially or temporary correlated and those numerically intractable (non-integrable).

<table>
<thead>
<tr>
<th>Title</th>
<th>The distribution of the inverse square root transformed error component of the multiplicative time series model</th>
</tr>
</thead>
</table>
| Authors | Chinwe Nwosu
Nnamdi Azikiwe University, Nigeria
Bright Ajibade
Petrolem Training Institute, Warri, Nigeria
Julian Mbegbu
University of Benin, Nigeria |
| E-mail | nwosucr@yahoo.com | | |
| Session ID: Name | Date | Time | Location |
| S5: Applications II | October 11 | S5-2: 3:05 pm -3:25 pm | Ojibway Room |

To increase efficiency in the use of data transformation in time series analysis, this paper investigated the distribution and properties of the left truncated $N\left(1, \sigma^2\right)$ error term, e^*_t, of the multiplicative time series model under inverse square root transformation with a view to establishing the condition when the transformed error term, e^*_t, is normally distributed with mean 1 as is expected of all error terms of the multiplicative time series model. The curve shapes of the probability density function (pdf) of e^*_t, $g(y)$ sketched for different values of σ, $\sigma \in [0.05, 0.5]$ and the application of Rolle’s theorem showed that $g(y)$ is bell-shaped with mode ≈ 1 when $\sigma \leq 0.145$. The normality of e^*_t for $\sigma < 0.15$ was further confirmed by simulated error terms. Finally the functional expressions for $E(e^*_t)$ and $Var(e^*_t)$ confirmed the mean of e^*_t to be 1 with $Var(e^*_t) \approx \frac{1}{4} Var(e^*_t)$ whenever $\sigma \leq 0.14$. Hence, $\sigma \leq 0.14$ is the recommended condition for successful inverse square root transformation.

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighted Dagum-Weibull and related distributions with applications to lifetime data</th>
</tr>
</thead>
</table>
| Authors | Broderick Oluyede and Benson Kimitei
Georgia Southern University, GA, USA |
| E-mail | boluyede@georgiasouthern.edu | | |
| Session ID: Name | Date | Time | Location |
| S11: Distribution III | October 12 | S11-2: 11:30 am –11:50 am | Ojibway Room |

A new class of weighted distributions, which we refer to as weighted Dagum-Weibull (WDW) and related distributions are proposed. Probability weighted moments (PWMs) of Dagum distribution are used in constructing this class of weighted distributions. This new class of distributions contains several weighted Dagum distributions such as length-biased Dagum-Weibull (LBDW), proportional hazard moment Dagum-Weibull (PHWWDW), proportional reverse hazard moment Dagum-Weibull (PRHHDW), length-biased Dagum-Rayleigh (LBDR), proportional hazard moment Dagum-Rayleigh (PHWDR), proportional reverse hazard moment Dagum-Rayleigh (PRHDR), length-biased Dagum-Exponential (LBDE), proportional hazard moment Dagum-Exponential (PHWDEXP), proportional reverse hazard moment Dagum-Exponential (PRHDE), Dagum-Weibull (DW), Dagum-Exponential (DE), and the parent Dagum distributions as special cases. Entropy and Fisher information of this class of weighted Dagum-Weibull distributions are derived. We estimate the model parameters via the maximum likelihood estimation procedure. Examples and comparison of the WDW distribution and its sub-models with the weighted generalized gamma, generalized gamma and generalized Lindley distributions are presented.

<table>
<thead>
<tr>
<th>Title</th>
<th>Properties of the weighted generalized Lindley and related distributions</th>
</tr>
</thead>
</table>
A new class of weighted generalized Lindley distribution and related distributions are presented.

Theoretical properties of the generalized Lindley model, weighted generalized Lindley distribution including the hazard function, reverse hazard function, moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, and entropy measures are derived. The results presented here generalize the generalized Lindley distribution and includes several distributions as well as special cases. The special cases include generalized Lindley distribution (GLD), weighted Lindley (WL), weighted Gamma (WG), Gamma (G) distributions and their underlying or parent distributions.

Modified saddle point approximations and empirical extensions

A polynomial adjustment is applied to the saddlepoint density approximation to improve its accuracy within the support of the target distribution. The polynomial coefficients are determined by making use of a moment-matching technique. A hybrid density approximation is also proposed. Density estimates that are based on empirical cumulant generating functions are introduced as well. The bivariate case, which is tackled via a standardizing transformation, involves the inversion of a high-dimensional matrix. The resulting representation of the joint density functions gives rise to a flexible copula family. Several illustrative examples will be presented.

Geometric disintegration method

The method presented here allows to derive exact statistical distributions if the density of the sample distribution is a function of an arbitrary norm, \(f(x) = g(||x||) \). This norm may adapt the model to a given cloud of sample points in a best geometric way and the density generator models both heavy and light tails. The log-concave and the \(l_{n,p} \)-symmetric sample distributions are particular cases of this model. We derive a geometric measure representation of the sample distribution which makes use of a norm-sensitively chosen non-Euclidean metric geometry for measuring subsets of density level sets and indicate several of the numerous possible applications.

Determining individual baseball contributions from team run distributions

The method presented here allows to derive exact statistical distributions if the density of the sample distribution is a function of an arbitrary norm, \(f(x) = g(||x||) \). This norm may adapt the model to a given cloud of sample points in a best geometric way and the density generator models both heavy and light tails. The log-concave and the \(l_{n,p} \)-symmetric sample distributions are particular cases of this model. We derive a geometric measure representation of the sample distribution which makes use of a norm-sensitively chosen non-Euclidean metric geometry for measuring subsets of density level sets and indicate several of the numerous possible applications.
It is often difficult to isolate an individual athlete’s performance when his/her contributions depend on teammates (e.g., assists in basketball, receptions in football). Due to its many one-on-one interactions, however, baseball lends itself well to such a task. By simulating games with a given batting order, an expected run distribution can be generated. Then, considering lineups with or without a given player, these run distributions can be compared to find that player’s expected contribution to a team’s wins in a season.

Title A multivariate two-sample test using regular minimum-weight spanning subgraphs
Authors David Ruth
United States Naval Academy, MD, USA
E-mail druth@usna.edu
Session ID: Name Date Time Location
S10: Statistical Inference October 12 S10-2: 10:00 am – 10:20 am Three Fires Room

A new nonparametric test is proposed for the multivariate two-sample problem as an extension of Rosenbaum’s Cross-Match Test. Each observation is considered to be a vertex of a complete (undirected) weighted graph; interpoint distances are edge weights. A minimum-weight, r-regular spanning subgraph is constructed, and the proposed test statistic is the number of edges in the subgraph containing one observation from the first group and one from the second. Unequal distributions will tend to result in fewer edges that connect vertices between different groups. This test is sensitive to a wide range of distribution differences and has noteworthy power characteristics.

Title Bivariate beta-generated distributions with applications to well-being data
Authors Jose Maria Sarabia, Faustino Prieto and Vanesa Jorda
University of Cantabria, Spain
E-mail sarabiaj@unican.es
Session ID: Name Date Time Location
S9: Distribution – Multivariate October 12 S9-3: 10:20 am – 10:40 am Ojibway Room

The class of beta-generated (BG) distributions (Eugene et al, 2002; Jones, 2004) has received a lot of attention in the last years. In this paper, several classes of bivariate distributions with marginal and/or conditional BG distributions are presented. These classes are constructed from different definitions of bivariate distributions with classical beta marginal and/or conditionals with different covariance structures. A new class of bivariate BG distributions based on the Sarmanov-Lee distribution is proposed and studied. Some specific bivariate distributions are studied and some extensions are considered. Finally, an empirical application with income and well-being data is presented.

Title Geometric means of positive definite matrices and the matrix-variate log-normal distribution
Authors Armin Schwartzman
North Carolina State University, NC, USA
E-mail armins@gmail.com
Session ID: Name Date Time Location
S8: Modeling II October 11 S8-3: 4:40 pm – 5:00 pm Three Fires Room

This work introduces a new lognormal family of distributions on the set of symmetric positive definite (PD) matrices, seen as a matrix-variate extension of the univariate lognormal family of distributions. This family arises as the large sample limiting distribution via the central limit theorem of two types of geometric averages of i.i.d. PD matrices: the log-Euclidean average and the canonical geometric average. These averages correspond to two different geometries imposed on the set of PD matrices. The limiting distributions of these averages are used to provide large-sample confidence regions for the corresponding population means. The methods are illustrated on a voxelwise analysis of diffusion tensor imaging data, helping resolve the choice of voxelwise average type for this form of PD matrix data.

Title Introducing the Conway-Maxwell-Skellam distribution for differences in count data containing common dispersion levels
Title: Bayesian modeling of integer data using the generalized Poisson difference distribution

Authors:
- Golnaz Shahtahmassebi
- Nottingham Trent University, UK
- Rana Moyeed
- Plymouth University, UK

E-mail: golnaz.shahtahmassebi@ntu.ac.uk

Session ID: S16: Bayesian II
- **Date:** October 12
- **Time:** 4:20 pm – 4:40 pm
- **Location:** Three Fires Room

Integer-valued random variables arising from the difference of two discrete variables are frequently seen in various applications. In this work, we present a new methodology for analyzing such variables. For this purpose, we obtain the distribution and derive the properties of the difference of two generalized Poisson variables with unequal parameters. This distribution is adopted to model two sets of data: the data from the 2008-2009 Italian Serie A football season and a set of ultra-high frequency data relating to FTSE100 index futures using covariates. The analysis is carried out in a Bayesian framework using Markov Chain Monte Carlo methods. Various model diagnostics and model comparisons were undertaken, which showed that the response variable in each case was explained well by the fitted model.

Title: On tests of hypotheses following transformations: An application to two-sample t-test

Authors: Tanweer Shapla and Khairul Islam

E-mail: tshapla@emich.edu

Session ID: S10: Statistical Inference
- **Date:** October 12
- **Time:** 10:40 am – 11:00 am
- **Location:** Three Fires Room

The t-test for testing equality of two population means requires the normality of populations the samples are being obtained. However, many real-life data violates the normality assumption. As such, the t-test cannot be applied or may result in invalid conclusions. Under this reality, non-parametric test or transformed tests could be used. In this presentation, a new transformed test will be investigated and compared with non-parametric tests and untransformed t-tests. Examples and simulation results reveal that the proposed test is more powerful than untransformed or non-parametric test in terms of the power and level of significance against violation of normality.

Title: Transforming the von Mises-Fisher distribution via generalized Möbius transformation

Authors: Kunio Shimizu
- Keio University, Japan

E-mail: k-shimizu@a2.keio.jp

Session ID: S2: Distribution and Inference
- **Date:** October 11
- **Time:** 10:00 am – 10:20 am
- **Location:** Three Fires Room
Transforming the von Mises distribution via the Möbius transformation from the unit circle onto itself has been studied by Kato and Jones (2010, JASA). Some properties of the resulting distribution, such as unimodality/bimodality and symmetry/asymmetry, are discussed in their paper. In this talk we first mention the way of making a Möbius transformation from the unit sphere/hyper-sphere onto itself. Then we transform the von Mises-Fisher distribution via the multivariate Möbius transformation and study properties of the resulting distribution with its fit to data sets.

Title: A general model of random variation
Authors: Haim Shore
Ben-Gurion University of the Negev, Israel
E-mail: shor@bgu.ac.il
Session ID: S5: Applications II
Date: October 11
Time: 3:25 pm – 3:45 pm
Location: Ojibway Room

Response Modeling Methodology (RMM) is a new platform for modeling monotone convex relationships. A unique feature of RMM is its "Continuous Monotone Convexity (CMC)" property, which renders separate monotone convex functions into points on the continuous spectrum of monotone convexity. The CMC property opens up new possibilities for developing generalized statistical distributions via modeling of the normal-based quantile function (the quantile expressed in terms of the respective standard normal quantile). In this presentation, the CMC property is exploited to develop a general model for random variation. Distribution fitting procedures and estimation methods are explored, using a set of 27 distributions.

Title: Adjusted method of moments estimators for power distribution parameters and their limiting distributions
Authors: A. R. Soltani
Kuwait University, Kuwait
E-mail: asoltanir@yahoo.com
Session ID: S7: Distribution II
Date: October 11
Time: 4:20 pm – 4:40 pm
Location: Ojibway Room

The adjusted method of moments (AMM) is a method to estimate unknown parameters in the parametric statistical inference. Soltani and Homei (2009) introduced this method. As in the method of moments (MM), AMM estimators are solutions to certain system of equations obtained by equating moments (or sample moments) with their corresponding random Stieltjes partial sums (RSPS). The AMM equations are expressed in terms of the sample, sample order statistics, the population distribution function and its unknown parameters. They are in general more difficult than MM equations to solve. The advantage of AMM to the MM is that, there is no need to closed forms for population moments, and neither to the population distribution or density function. In this article we assume that our sample is taken from a population supported by a finite interval, and provide certain interesting statistical features of the RSPS and AMM estimators. We look into the limiting distribution of the AMM estimators. We demonstrate the normal distribution is not the right limiting distribution. At the end we provide applications for AMM estimators and their distributions with real data.

Title: The slash and skew-slash Student-t distributions
Authors: Fei Tan and Hanxiang Peng
Indiana University-Purdue University Indianapolis, IN, USA
E-mail: ftan@math.iupui.edu
Session ID: S14: Distribution IV
Date: October 12
Time: 3:05 pm – 3:25 pm
Location: Three Fires Room
We first introduce the multivariate slash t distribution and investigate its properties. Then the multivariate skew-slash t distribution is defined. These distributions provide alternative choices in simulation and fitting of skewed and heavy-tailed data for which the normal fitting is not appropriate. Density curves of univariate slash and skew-slash distributions are graphically compared to the usual density curves. Bivariate density contours of skew-slash distributions are visually demonstrated. At the end, the skew-slash t distribution is used to fit real datasets and the fitting improves the skew-normal fitting of Azzalini and Capitanio and the skew-slash normal fitting of Wang and Genton.

Title	A new three-parameter lifetime distribution and associated inference
Authors | Min Wang
Michigan Technological University, MI, USA
E-mail | minwang@mtu.edu
Session ID: Name | Date | Time | Location
S14: Distribution IV | October 12 | 3:25 pm – 3:45 pm | Three Fires Room

In this paper, a new three-parameter lifetime distribution is introduced and various properties of the new distribution are discussed. These include shape of the probability density function, hazard rate function and its shape, quantile function, the limiting distributions of order statistics, and the moments. The unknown parameters are estimated by the maximum likelihood method. We develop an EM algorithm to find the maximum likelihood estimates of the unknown parameters, because they are not available in closed form. The Fisher information matrix is also obtained and it can be used for constructing the asymptotic confidence intervals. Finally, numerical examples based on two real-data sets are analyzed for illustrative purposes.

Title	Bayesian variable selection for mixed effects model with shrinkage prior
Authors | Mingan Yang
Central Michigan University, MI, USA
E-mail | yang8m@cmich.edu
Session ID: Name | Date | Time | Location
S6: Bayesian I | October 11 | 3:25 pm – 3:45 pm | Three Fires Room

Recently, many shrinkage priors have been proposed and studied in linear models to address massive regression problems. However, shrinkage priors are rarely used in mixed effects models. In this article, we address the problem of joint selection of both fixed effects and random effects with the use of several shrinkage priors in linear mixed models. The idea is to shrink small coefficients to zero while minimally shrink large coefficients due to the heavy tails. The shrinkage priors can be obtained via a scale mixture of normal distributions to facilitate computation. We use a stochastic search Gibbs sampler to implement a fully Bayesian approach for variable selection. The approach is illustrated using simulated data and a real example.

Title	Sampling for a distribution with complicated data structure
Authors | Peng Zeng, Shumin Wang
Auburn University, AL, USA
E-mail | zengpen@auburn.edu
Session ID: Name | Date | Time | Location
S12: Inference and Simulation | October 12 | 11:30 am – 11:50 am | Three Fires Room

In some computer experiments, the input is not numerical values but data with complicated structure. Sampling in such a scenario relies on an effective method for quantifying the data in order to generate a random sample. In this talk, we focus on a simulation study of the safety of high-field human MRI scanning. The major difficulty is how to generate a random sample of human heads that resemble those in a genuine human population. We propose an efficient way to quantify a human head and describe its distribution. A random sample can be generated easily.