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ABSTRACT

Ransomware has risen to be among the top cyber threats in recent years. There is an alarming trend of
ransomware stealing data in addition to locking files. Compared to traditional ransomware, this new data-
selling ransomware can be more harmful to the victims facing the data leakage threat. Traditional wis-
dom of defensive measures such as data backup is less effective in preventing the attacker from making
money by selling data. We propose two preventive measures designed to defend against the data-selling
ransomware, i.e., preventive data encryption and preventive data deception. Users may form a preven-
tive portfolio made up of the two preventive measures. We contribute a novel game theoretical model of
the data-selling ransomware to study the equilibrium strategies of the attacker and victims. The equilib-
rium solution of the portfolio and tradeoff analysis of both data encryption and deception are particularly
useful for the users to optimize their system to defend against ransomware attacks. Simulation studies
demonstrate the effectiveness of the preventive portfolio, which maximizes user utility while significantly
reducing the profit of the attacker.

Game theory
Economics

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Ransomware is a particular malware that locks a victim’s com-
puter systems and files through encryption via either software vul-
nerabilities or social engineering. These deny-of-access attacks typ-
ically infect high-value machines containing sensitive files such as
login credentials, important financial data, business records, hos-
pital patient records, government documents, etc. Victims are then
asked a ransom payment in return for the key to decrypt their data
and systems.

Since the malware gains full access to user data, it can poten-
tially collect sensitive information from the target machines and
use the information to blackmail the victims. We believe one of the
most detrimental types of ransomware is the one that not only en-
crypts files, but also steals information in each of the targeted ap-
plications (Cyware, 2020). Ransomware attackers have threatened
to publicly release the stolen data if the victims choose not to
respond to their ransom demands (Cyware, 2020), e.g., the Maze
ransomware (Whitwam, 2019), and the trend is likely to continue
(Mathews, 2020).
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Ransomware is believed to be highly lucrative (Simoiu et al,,
2019). Traditionally, all ransomware profits come from ransom pay-
ment. A hypothetical, new ransomware model, i.e. Ransomeware
2.0 (Li and Liao, 2020), has been proposed by considering an ad-
ditional revenue source to the attacker, i.e., data selling capability.
We believe this new data-selling ransomware is not only imminent
but also is much harder to defend compared with traditional ran-
somware. For example, victims with a full data backup may still
be motivated to pay ransom to prevent attackers from selling their
sensitive data.

To that end, we propose, study and evaluate two preventive
measures targeting the data-selling ransomware, i.e., preventive
data encryption and preventive data deception. Preventive data
encryption may be achieved by encrypting either the partial or
whole system drive enabled by technologies such as trusted plat-
form module (TPM) or as simple as via password-protected data
files. While traditional ransomare prevents victims from accessing
their system and data through encryption, we note that preventive
encryption prevents attackers from accessing victims’ data.

Preventive data deception is another interesting measure that is
supported by fake information or data. In this scheme, a percent-
age of data unknown to the attacker may be artificially generated
and does not reflect the real data actually used by the users. Intu-
itively, the uncertainty of fake information deteriorates the quality
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of data stolen from users and waters down the market value of
data.

To study the proposed preventive measures, we build a novel
game-theoretical model of the data-selling ransomware at the
presence of proposed preventive measures. In this model, attackers
consider factors such as how much ransom to ask, whether to keep
reputation to unlock user’s data once ransom is paid, and whether
to sell the data based on the ransom. Users, on the other hand,
decide on the composition of preventive portfolio (i.e., percent-
ages of data encryption and deception) to maximize their utilities
based on their cost constraints. We derive the equilibrium strate-
gies for both the attacker and the users/victims. Through extensive
simulation studies, we analyze the complex relationships among
the preventive measures, user utility, and ransomware profit. The
results suggest the proposed preventive measures effectively de-
fend against data-selling ransomware and significantly reduce the
attackers’ profit.

Our major contributions of the paper include

1. We proposed an interesting concept of preventative portfolio
using a combination of both data encryption and data decep-
tion to defend against the data-selling ransomware, which we
perceive as the emerging variant of ransomware attacks.

2. We developed a novel game theoretic model for the new data-
selling ransomware to analyze the complex relationships be-
tween attackers and users/victims by considering multiple de-
cision variables. We were able to derive the optimal strategies,
and ultimately, equilibrium / optimal solutions for both attack-
ers and victims.

3. We conducted an extensive simulation study to compare
the complex relationships between various decision variables
imbedded in equilibrium solutions, for example, how various
rates of encrypted and fake data affect user utility and attacker
profit. We derived other insights for the security practitioners
and ransomware market.

It is worthwhile to note several derivatives from our study. First,
the proposed preventive measures also have positive externality,
i.e., they protect not only the victims who adopt them, but also
others who may not use preventive measures or for whom low
prevention is optimal. In addition, preventive measures may mo-
tivate the attacker to improve credibility. Second, other market-
based defensive measures may be explored as well, e.g., the vic-
tims and defensive buyers (Li and Liao, 2018) may participate in
the data market, to increase the transaction costs of the attacker,
lower the transaction price, and/or track down the sellers.

The rest of the paper is organized as follows. Section 2 reviews
related literature. Section 3 performs the game theoretical analy-
sis of the data-selling ransomware at the presence of preventive
portfolio composed of preventive encryption and preventive decep-
tion. Optimal strategies of the victims and the attacker are derived.
Based on the theoretical analysis, Section 4 presents simulation re-
sults that illustrate how individual users choose the composition
of their preventive portfolio, and how the presence of preventive
portfolio affects the expected payoffs of the victims and the at-
tacker. Section 5 concludes the paper.

2. Related works

Ransomware has recently become the top cyber threats and one
of the most widespread cybercrimes (CyberEdge, 2020). Often, we
hear the news report on ransomware attacks on businesses, gov-
ernment agencies, or even hospitals, forcing them to shut down
their daily operations. Healthcare systems and financial systems
are being attacked with ransomware through COVID-related con-
tent (Hakak et al., 2020). Recent attacks on vast number of orga-
nizations post enormous burden in terms of monetary and repu-
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tation loss involved in those attacks (Aldaraani and Begum, 2018;
Simoiu et al., 2019).

To reduce the risk of ransomware, various cyber security strate-
gies and practices are recommended (Silva et al., 2019), and re-
search on ransomware and its detection and prevention tech-
niques has been reviewed (Al-rimy et al., 2018). For example, zero-
day ransomware attacks may be detected via monitoring file sys-
tem activities for I/O requests and protecting Master File Table
(Kharraz et al., 2015). Botnets may be traced for the distribution
paths of ransomware or to exploit vulnerabilities to deliver mal-
ware.

General preventive measures, such as user education and net-
work management, apply to most malware including ransomware.
Users are recommended to take preventive measures to avoid ran-
somware (Mohurle and Patil, 2017). A common advice of ran-
somware literature is mitigation such as backup technologies
(Laszka et al., 2017). Data backup is considered the most effec-
tive strategy to mitigate the loss of ransomware (Ali, 2017; Anghel
and Racautanu, 2019; Subedi et al., 2017). Although sufficient data
backup has the potential to defeat traditional ransomware, it has
no effect on preventing the new data-selling ransomware (Li and
Liao, 2020; 2021). Are there any effective preventive measures
against this data-selling ransomware? This leads to our research
in this paper.

The problem of ransomware needs to be addressed from the
perspective of multiple disciplines (Wolf and Goff, 2018). In ad-
dition to technical approaches, there has been recent research
that uses economics and game theory to study specific aspects
of ransomware. For example, economic analysis of ransomware
(Hernandez-Castro et al., 2020) reveals the impact of different
price discrimination strategies for estimating an optimal ran-
som value. A theoretical model of ransomware based on stan-
dard economic pricing models was implemented to explore strate-
gies criminals could use to extract illegal gains from ransomware
(Hernandez-Castro et al., 2020). Game theory can model the strate-
gic playing by ransomware criminals and victims (Caporusso et al.,
2018). A repeated game setting was developed to explicitly model
reputation of the criminals in ransomware attacks (Cartwright and
Cartwright, 2019). For businesses, the relationship of investment in
backup technologies and deterrent for ransomware attacks is an-
alyzed in a game-theoretical model of the ransomware ecosystem
(Laszka et al., 2017).

Since existing game theoretic works are almost entirely on
traditional ransomware that demands ransom payment with no
data leakage threat, we conduct the first game theoretical analy-
sis of the data-selling ransomware by focusing on two preventive
measures, i.e., preventive data encryption and preventive data de-
ception. The equilibrium solutions derived from the game theory
model provide the rules users may follow to construct their opti-
mal preventive portfolio against the data-selling ransomware.

Defense against data-selling ransomware is related to defense
against data theft and data protection. In such case data encryp-
tion has been used (and sometimes required by law) to protect
customer databases kept by organizations against data theft. We
note that the setting of data-selling ransomware is different from
traditional data theft. While it may be possible for organizations
to encrypt the entire databases on a server to protect against con-
ventional data theft, in a ransomware attack, the victims are often
end users whose system and user files on the local machines get
locked (encrypted) and/or stolen by the malware. For practical pur-
pose, it may not be possible for the end user systems to be 100%
encrypted while users are using their machines. Therefore, preven-
tive encryption in the paper (ranging from full disk encryption to
partial on-demand encryption based on file/directory access) is to
protect private data of end users against data-selling ransomware.
While data encryption may be better than data deception for trac-
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tional data theft, data deception (in addition to data encryption) is
a valuable alternative in defense against data-selling ransomware.

The practice of data deception proposed in the paper is also
related to but not entirely the same as a practice known as
security-by-obscurity. Traditionally, security-by-obscurity/secrecy
means that the technical details of a system are kept secret in a
hope that such system will not be easily compromised if no one
knows how it works. For example, a software company may not
want to make their source code public, making it hard to identify
potential vulnerabilities in their software. We, on the other hand,
are not hiding the fact of using fake data. Actually, we argue the
benefit of advertising to the public including attackers that data
deception policy is enforced in a protected organization.

It is generally agreed in security community that security-by-
obscurity “alone” may not be a good idea. However, good secu-
rity is always layered. When used as an independent layer, ob-
scurity is considered a valid security tool (Climek et al., 2016).
In recent years, security through obscurity has gained support
as a methodology in cybersecurity through Moving Target De-
fense and Cyber Deception from both military and civilian con-
texts such as AFRL cyber agility program, DoD, and DHS. NIST’s
cyber-resiliency framework includes deception as an integral part
of a resilient and secure computing environment (Ross et al.,
2021). The data deception component suggested in the paper is not
intended to replace existing security mechanisms against cyber-
attacks. Things such as firewalls, intrusion detection/prevention
systems, spam filters, multi-factor authentications, encryptions,
data backup/recovery procedures, user educations, etc. are still in
place. The additional independent layer of preventive portfolio (i.e.,
a combination of data encryption and data deception) suggested
in the paper is a complementary part of the entire secure ecosys-
tem. In the case that ransomware attacks still succeed despite of
these existing security mechanisms, the preventive strategies at
least lower the market value of the data and reduce the economic
incentives of data-selling ransomware attackers.

3. Game theoretic model of preventive portfolio against
data-selling ransomware

In this section we lay out a game theoretic framework to model
a preventive portfolio against the data-selling ransomware and de-
rive the game outcomes. The portfolio is made up of two preven-
tive measures: preventive data encryption and preventive data de-
ception.

3.1. Preventive data encryption and preventive data deception

Compared to traditional ransomware, the data-selling ran-
somware imposes additional data leakage threat on the victims.
We aim to design preventive mechanisms that target in particular
the data-selling feature of the ransomware. We propose two pre-
ventive measures called preventive data encryption and preventive
data deception.

Preventive data encryption can be used to protect data from be-
ing disclosed to unauthorized access. The term preventive refers
to users encrypting their data before possible ransom attacks. If a
ransomware attack does occur, while the attacker will still be able
to encrypt the victims’ systems to prevent the victims from using
their computers or accessing their data, the attacker will not be
able to steal or access the victims’ data. In other words, if data is
encrypted with one key, one may encrypt the already encrypted
data again with another key, but double encryption will not reveal
the original data.

The rationale for preventive data deception is that the profit of
data-selling ransomware largely depends on the market value of
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data and/or the transaction cost of selling data. We propose to cre-
ate fake information/data to water down the true information/data.
When the stolen data is a mix of true and fake data, the market
price of data must go down as the data quality deteriorates. The
transaction cost may go up because of the increased uncertainty.

3.2. Game players’ strategy space

There are two types of players in the data-selling ransomware
game: attackers and users/victims. To prevent the possible loss
of data leakage, the users construct a preventive portfolio made
up of preventive data encryption and preventive data deception.
Let 8. € [0, 1] be the percentage of data that is pre-encrypted and
37 €[0,1] be the percentage of fake data. An existing preventive
portfolio at the moment of attack is the actual level of protection
the portfolio provides to the users.

Once a data-selling ransomware attack succeeds, the users be-
come the victims, who face dual threats: losing access to data and
data leakage. The attacker demands an equalized ransom payment
R > 0 on all the victims, and the victims decide whether to pay
the ransom or not. Let p be the victims’ choice of ransom pay-
ment that is binary, i.e.,, p =1 if choosing to pay, and p = 0 other-
wise. Upon observing the victims’ action on ransom payment, the
attacker chooses whether to return files and/or to sell data. It is
reasonable to assume that the attacker would not return files and
would sell data with no ransom payment. However, when a vic-
tim chooses to pay the ransom, there is no guarantee that the at-
tacker would always return the files and/or not to sell the data. We
use B for the attacker’s probability of returning files with ransom
payment, and Bs for the attacker’s probability of selling data with
ransom payment.

Therefore, the users/victims’ strategy space is the choice of
(8e. 85, p), and the attacker’s strategy space is the choice of
(R, Br, Bs). The combination of J. and J; is defined as the struc-
ture of the preventive portfolio composed of preventive data en-
cryption and preventive data deception. The after-attack scenario
fits a Stackelberg game with asymmetric information: the attacker
moves first by demanding a uniform ransom based on incomplete
information of the victims’ willingness to pay and preventive port-
folio; the victims follow by choosing ransom payment strategy
based on incomplete information about the attacker’s reputation.
The equilibrium solution of the game is the strategy profile that
serves best each player, given the expected strategies of the other
player.

Table 1 lists the major symbols and definitions used in the
model. We use the phrase “returning files” or “unlock data” inter-
changeably to refer to the situation in which the attacker deliv-
ers decryption keys to remove restrictions to a victims’ comput-
ing resources and files. We use the phrase “selling data” to re-
fer to the situation in which the attacker sells the stolen data to
a third party or in a market place. We also use the terms “pre-
encrypted files” and “preventive data encryption” interchangeably,
and “fake data/information” and “preventive data deception” inter-
changeably. We assume all the game players are rational, i.e., they
choose strategies to reach a game outcome that maximizes their
expected payoffs. In the following sections, we will derive the equi-
librium solution of the game by analyzing the optimization prob-
lems of the game players.

3.3. Victims’ expected payoff

The victims’ expected payoff (or user utility) at the presence of
preventive portfolio is

u=-pR—(1-pp)V - (1-p(-pB))(1-8)h(s)D
—C(8e) —C(5p) (1)



Z. Li and Q. Liao

Table 1
Symbols/variables and definitions.
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Symbol/variable  Definition

R ransom request
M market value of data
v victims’ self-valuation of cost from losing access to data
D data leakage damage to victims
A attacker’s profit of selling data (data profit)
Br probability of returning/unlocking files with ransom payment
Bs probability of selling data with ransom payment
G cost of returning/unlocking files to victims
G transaction cost of selling data
Se percentage of encrypted files
8y percentage of fake data
C(8e) cost of preventive encryption
C(8p) cost of preventive deception
h(és) fraction of data value remained at the presence of fake data
p binary variable measuring victims’ ransom payment choice
N number of users/victims
n number of victims choosing to pay ransom
u (individual) user utility
b4 ransomware profit from an individual victim
I ransomware profit from all victims
Table 2

Victims’ expected payoff.

Case  Victims’ choice

Victims’ expected payoff

I p:O,B(.:Sf:O

Il p=138=6;=0

Il p=0,86;=0,0<6 =<1
v p=1,8=00<8 <1

\Y p=0,8=00<d;<1

VI p=138=00<d,<1
VIl p=0,0<38<1,0<8 <1
VIII p=1,0<68=<1,0<48 <1

-V-D

“R— (1= BV~ D

—V— (1-8)D ~C(3)

“R— (1= BV — Bs(1-5,)D ~C(5,)

—V —h(3;)D—C(5p)

“R— (1= BV — Bsh(5/)D — C(5))

~V — (1~ 80)h(8)D ~ C(8) — C(3y)

“R— (1= BV = (1 = 80)h(3)D — C(8e) — C(3))

where V is the victims’' self-valuation of the locked files that
measures the victims’ loss of losing access to the files, includ-
ing but not limited to the recovery costs to restore the opera-
tions back to normal and longer-term impacts of permanent loss
of data; D is the victims' data leakage loss; C(8,) is the cost
of preventive encryption; and C(§;) is the cost of preventive
data deception.

It is reasonable to assume there are costs associated with pre-
ventive measures. For example, preventive encryption may require
extra CPU cycles and reduce quality of experience (QoE). Preventive
deception may require extra storage for storing fake data. Moving
targets may cause user confusion and extra maintenance overhead.
If there are no preventive measures taken, there is obviously no
prevention cost, i.e., C(8) =0 at e =0 and C(d;) =0 at §; =0.
Prevention costs increase as the level of prevention increases, i.e.,
C'(8e) > 0 and C'(d¢) > 0.

All terms in Eq. (1) have negative signs, meaning the victims
are absolutely harmed by the data-selling ransomware attack. Pre-
ventive portfolios help reduce the data leakage loss of the victims
but do not affect the loss of the victims when they are denied ac-
cess to the data locked in the attack. The decrease in the victims’
data leakage loss is proportional to the level of preventive encryp-
tion while the protection of preventive deception is not necessar-
ily linear. In Eq. (1), h(d;) € [0, 1] measures the potential impact of
fake data on camouflaging real data. At §; =0, h(df) = 1. As the
percentage of fake data increases, h(§y) decreases and h(8;)D de-
creases, ie., h'(8;) < 0.

The victims’ expected payoffs in various cases of the victims’
strategy choice are listed in Table 2.

3.4. Victims’ optimal strategy

The users need to determine the composition of the preventive
portfolio before the attack and whether to comply with the ran-
som request after the attack. They choose their optimal strategy
(63, 8}, p*) to maximize their expected payoff. The optimal choice
of preventive portfolio §; and 8} depends on the comparison of
expected benefit and preventive cost that solve the following two
first-order conditions of Eq. (1):

(1= p(1 = Bs)h(87)D =C'(57) (2)

and
—(1=p(1 = B))(1 =8 (85)D =C'(87) (3)

In Egs. (2) and (3), the left-hand-side is the marginal benefit of
the preventive measures in terms of the marginal decrease in data
leakage loss, and the right-hand-side is the marginal cost of tak-
ing the preventive measures. The optimal level of prevention cor-
responds to the point where the marginal benefit and the marginal
cost are equal.

These two equations are what the users shall follow to con-
struct the preventive portfolio before the attack. At the time of
forming the portfolio, the users evaluate their data (how much
the data is worth to them) and cost structure of preventive mea-
sures. What is unknown to the users is the attacker’s credibility
and the ransom request that would affect the users’ ransom pay-
ment choice. The users would have to set up the preventive portfo-
lio based on the expected values of the attacker’s control variables.
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When an attack actually occurs, the existing level of prevention
is what the victims take as given to choose their optimal com-
pliance strategy. The actual ransom demand will become known.
The victims incorporate the new information into their decision-
making to choose whether to pay ransom. Cases VII and VIII in
Table 2 are the victims’ expected payoff when they either refuse
to pay the ransom or choose to pay at the presence of preventive
portfolio. The victims choose to pay the ransom (p = 1) if the ex-
pected payoff in Case VIII is no less than the expected payoff in
Case VII. Therefore, the victims’ optimal choice of ransom payment
given the pre-determined optimal preventive portfolio (5}, 8}) is

if BV +(1-8)(1- 3Z)h(5})D >R,

1,
p'= {o, if BV + (1 - B)(1 - 55)h(GDD <R, (4)

where BV + (1 -85)(1 - 8;)h(87)D defines the victims’ williness
to pay, i.e., the highest ransom the victims may accept in exchange
for unlocking data and not leaking data. The victims would only
choose to pay the ransom if the ransom request is no higher than
their willingness to pay. Eqs. (2)-(4) combined specify the victims’
optimal strategy.

The key factors determining the victims’ willingness to pay in-
clude the victims’ valuation of the locked files (V), the data leak-
age loss to the victims (D), the level of prevention (8. and &), and
the attacker’s reputation (B, and f). Of the factors, V and D are
given. The preventive portfolio is also given at the time of attack.
The attacker’s reputation matters since the victims’ willingness to
pay increases when the attacker is more likely to keep the promise
with ransom payment.

3.5. Ransomware profit

The data-selling ransomware attacker receives the following
profit from victim i,

7 = piR — piBrG + (1 — pi(1 — Bs))A; (5)

where G is the cost of returning files, and A; is the data profit
received from victim i. The attacker sells the victim’s data if doing
so is profitable, i.e.,

A {(1 —8eDh(@Mi =G5, if(1 =80 Dh(S7)M; = G,
1= 07

lf(] — 89‘1‘)]1(8101,')1\/1,‘ < Cs. (6)

where G is the cost of selling data, and M; is the market value of
the victims’ data in absence of preventive measures.

From Eq. (5), the attacker receives a profit of A; if victim i
chooses not to pay the ransom (p; = 0). The attacker’s profit is
R — B,Cr + BsA; if victim i chooses to pay (p; = 1).

Combining all N victims, the total profit of the attacker is

n N

M=nR-BC)+BsY A+ D A (7)
i=1 i=n+1

where n = {i e N|B:V; + (1 - Bs)(1 — 8 ))h(57;)D; = R}.

The attacker receives both ransom profit and data profit from
the n victims who pay the ransom. Of which, the per-victim ran-
som profit is R — B,C,, and the per-victim data profit is BsA;. For
the N —n victims who do not pay, the attacker receives zero ran-
som profit but A; individual data profit.

3.6. Attacker’s optimal strategy

The goal of the attacker is to choose ransom R and the proba-
bilities of returning and selling users’ data 8; and s to maximize
profit. Had the attacker had perfect information on each victim'’s
willingness to pay, the attacker would differentiate the ransom
request to demand an individualized ransom B;V;+ (1 - B5)(1 —
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8ei)h(85)D; on victim i, which is the maximum ransom victim i
can accept. Then the attacker would set g, =1 if B;V; > C,, and
Bs =0 if (1—Bs)(1—=3¢;)h(85;)D; > (1 =8¢ ;)h(35;)M; —Cs. Lack-
ing perfect information, the attacker may group the victims by es-
timating their willingness to pay and demand a tailored ransom
to each individual group. When hacking companies, the attacker
may request individual ransoms depending on company size and
revenue. Nevertheless, the attacker would not perfectly price dif-
ferentiate the victims, especially when the attacker faces a large
number of unknown victims. In this case, knowing the distribu-
tion of users’ willingness-to-pay within the population is the key.
When the willingness to pay is uniformly distributed, the profit-
maximizing ransom would be the mean of all the victims’ willing-
ness to pay (Li and Liao, 2020). That is

N
R = 5BV + (1= B (1~ 8 (5D} (8)
i=1

Br and fBs gauge the reputation of the attacker. The attacker’s
promise is more credible as §; increases and/or fs decreases. The
attacker’s likelihood of default depends on the tradeoff between
ransom revenue and gains from default. Choosing a high proba-
bility of returning files and a low probability of selling data with
ransom payment increases the victims’ willingness to pay, hence
generating more ransom revenue, but at the cost of foregone data-
selling income.

The attacker is not granted reputation but has to gain reputa-
tion by building records. The victims estimate the credibility of the
attacker by collecting information on the past records of the at-
tacker. Unfortunately, the currently available information is largely
on a population mean rather than on a particular attacker, and the
population mean changes from survey to survey. For example, it
is reported in 2019 about 60% victims who pay the ransom recov-
ered their files (CyberEdge, 2020). In a 2021 global survey, 32% of
those organizations whose data was encrypted decide to pay the
ransom but only 8% of them got all their data back (Sophos, 2021).
The percentage changes over time and across ransomware and at-
tackers. In this game the attacker sets 8, =0 and fBs =1 for the
(N —n) victims who do not pay. The attacker returns files to n, of
the n victims who pay the ransom (8; = i), and sells the data of
ns of the n victims who pay the ransom (8s = ).

Indeed, there are two B;'s and two f’s, ex ante and ex post,
depending on the timing. The B, and Bs determining the victims’
optimal preventive portfolio and willingness to pay are ex ante or
expected, based on the historic record of the attacker, likely to
be a mixed result of the attacker’s optimal choice, random acts,
technical errors, and incomplete records. The §, and B in equa-
tions B =1 and Bs =1 are ex post or realized. For simplicity,
we assume the ex ante and ex post Br and B have no signifi-
cant difference. This would be true if the distribution of V and D
were not significantly different between previous victims and cur-
rent victims of ransomware.

Applying marginal analysis, the attacker shall compare the ad-
ditional benefit (i.e., marginal benefit) of a small change in 8; or
Bs to the additional cost (i.e.,, marginal cost) of the change. The
change would be profit improving if the marginal benefit of the
change exceeds the marginal cost.

Holding fBs constant, we study the marginal effect of S, on
ransomware profit. When the attacker increases the probability of
returning files, i.e, when g, increases, n increases as more vic-
tims choose to pay the ransom hence the ransom profit increases
for the attacker. In the meantime, data profit decreases from the
victims who change their ransom payment choice in response to
changing fB;. Let B, change by Ap;. The corresponding change
in data profit is —(1 — fs) Z,-A:q A;. The corresponding change in
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ransom profit is (n+ An)(R — (Br + AB:)C) — n(R — B:G), which
simplifies to An(R— (Br + ABr)G) — nABC.
The net change in ransomware profit is hence
An

All = An(R— (B + AB)G) —nABG — (1 - Bs) ZAi 9)
i=1

In Eq. (9), the first term An(R — (Br + ABr)Cr) is the increase in
ransomware profit generated by the An victims who switch from
no pay to pay. The second term nApg:C is the decrease in ransom
profit as the cost of returning files increases for the original n vic-
tims who pay the ransom, and the last term (1 — fs) Z,ﬁ'} A; is the
decrease in data profit.

For marginal analysis, the first term in Eq. (9) is the marginal
benefit of the incremental change in S, and the sum of the last
two terms is the marginal cost of the change. The attacker shall
increase B, when the marginal benefit is bigger and decrease B,
when the marginal cost is bigger. The profit-maximizing S; satis-
fies

An
dim AR~ (B; + ABDG) = lim nABC + (1 f) ;A,-
Or,

ABC(n+ An) + (1 ;) T2 A;
An

Similarly, we can derive the profit-maximizing SBs by compar-
ing the marginal benefit and the marginal cost of changing g
by holding B; constant. When the attacker’s probability of sell-
ing data decreases from fSs to Bs — Afs, the number of victims
choosing to pay the ransom increases. The corresponding change
in ransom profit is An(R - B,C;), and the corresponding change
in data profit is —ABs Y1, Aj — (1 — Bs + ABs) Y21 A;. The former
is the marginal benefit of the decrease in Ss and the latter is the
marginal cost. The attacker shall decrease S if the marginal ben-
efit is bigger and increase Bs otherwise. The profit-maximizing g;
satisfies

Lo 1
hr = Al/é,nlo E{R_ } (1o

n An
Jm AR B.C) = lim AR A+ (1= +AB) YA
s s i=1 i=1

Or,
. An(R - B,G) — ABs Z?:l A;
:35 =1- An
iz1 Ai

Combining Eqs. (8), (10), and (11), {R*, B}, B} is the attacker’s
optimal strategy to maximize ransomware profit that balances ran-
som profit and data profit, dependent on the victims’ valuation of
locked files and stolen data that affect n.

The equilibrium solution provides the guidelines the attacker
may follow to increase profit. For example, the attacker shall de-
crease the probability of returning files if the cost of returning files
increases, while increasing the probability of returning files if de-
manding a high ransom. The attacker shall increase the probabil-
ity of selling data if more victims are of high value. It would be
difficult for the attacker to fulfill the optimal strategy due to in-
complete information. The best practice could be to choose f; and
Bs consistent with the victims’ perception. Since the victims’ per-
ception is consistent with past records of ransomware attacks, the
practice can be self-reinforcing, leading to a steady state of the two
probabilities that helps control uncertainty.

— ABs} (11)

3.7. Effects of preventive measures

3.7.1. Preventive measures reduce victims’ willingness to pay
Cases I and II in Table 2 are the victims’ expected payoffs in
absence of preventive measures. Cases Ill and IV are the victims’
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Table 3
Victims’ willingness to pay.

Preventive portfolio

8e=68;,=0
8;=0,0<8 <1
8e=0,0<d5<1
0<5e§1,0<5f§1

Victims’ willingness to pay

BV + (1~ oD

BV + (1 - B5)(1-8.)D
BV + (1 - Bs)h(87)D

BV + (1= Bo)(1 = 8e)h(85)D

expected payoffs when preventive data encryption is the only pre-
ventive measure used while Cases V and VI are the victims’ ex-
pected payoffs when preventive data deception is the only preven-
tive measure used. In any case of preventive portfolio, the victims
would choose to pay the ransom if doing so generates a larger ex-
pected payoff than declining the ransom demand. We derive the
victims’ willingness to pay in all cases as in Table 3.

As shown, the existence of preventive measures decreases the
victims’ willingness to pay. While preventive portfolio would not
help reduce the victims’ loss from losing access to the locked
data, preventive portfolio would help reduce the loss of data leak-
age. In the case of sufficiently large preventive encryption (8. =
1) and/or preventive deception (h(df) =0), the data-selling ran-
somware profit would be equal to the profit of traditional ran-
somware when data profit is zero and victims’ willingness to pay
ransom is completely determined by their valuation of locked files

(BrV).

3.7.2. Preventive measures induce higher credibility of attacker

The attacker’s optimal strategy of returning files and selling
data are in response to the victims’ preventive portfolio choice. As
in Egs. (10) and (11), the values of B} and i depend on the value
of A* that changes with the victims’ preventive portfolio structure,
8% and 8}.

Since §; € (0,1), the attacker’s probability of returning files
(B) increases in the presence of preventive encryption. Such
change induces more victims choosing to pay the ransom, increas-
ing ransom profit to compensate for the lost data profit.

The attacker’s probability of selling data (B;) decreases as well
in the presence of preventive measures. The deteriorated quality
of data decreases the marketability of the stolen data, thus giving
ransom profit more weight over data profit.

3.7.3. Preventive measures decrease ransomware profit

As in Eq. (7), there are two components of profit of the data-
selling ransomware: ransom profit and data profit. Both preventive
encryption and preventive deception decrease data profit of the at-
tacker. They can also decrease ransom profit of the attacker by de-
creasing the victims’ willingness to pay, thus reducing the ransom
demand and the number of victims choosing to pay the ransom.

In absence of preventive measures, the data-selling ransomware
profit has the same format as in Eq. (7) with a different num-
ber of victims choosing to pay the ransom as n = {i € N|;V; + (1 —
Bs)D; > R} and different individual data profit as

M; -G, ifM; =G,

Ai= {0, ifM; < G;. (12)

In absence of preventive measures, the attacker would receive
both higher ransom profit and data profit, and hence total higher
ransomware profit. Comparing ransomware profit in Eq. (7) at var-
ious levels of preventive encryption and preventive deception, we
can see that the number of victims paying the ransom (n) de-
creases as J, increases, thus reducing ransom profit. Data profit
decreases as well as the attacker cannot sell the data stored in the
pre-encrypted files. Since both components of ransomware profit
decrease, the data-selling ransomware becomes less profitable. The
higher & is, the bigger is the decrease in ransomware profit.
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4. Simulation results

The game theoretic analysis suggests how both users and at-
tackers choose their optimal strategies, especially how the users
shall form their optimal preventive portfolio including preventive
data encryption and preventive data deception to defend against
the data-selling ransomware attack. In this section, we conduct
simulations to systematically study how users choose optimal pre-
ventive portfolio and how the presence of preventive portfolio af-
fects the expected payoffs of both users/victims and attackers.

4.1. Simulation parameters

The number of users/victims is set at N = 30. The victims’ self-
valuation of files and the market value of data are both randomly
generated in the range of 0 ~ 50. Without loss of generality, the
following parameters are set: G =C; =0, D= M. The simplifica-
tions will not affect the insights we shall derive from the simu-
lations.

The relationship between the fake data rate and the decrease
in the market value of data is set as h(d;) =1 - (Sf)%. At 47 =0,
h(é;) =1. At §; =1, h(5) =0.

The preventive encryption cost function has the increasing
marginal cost, C(8¢) = 82. The cost function of preventive decep-
tion also has the increasing marginal cost, C(55) = 8}.

Egs. (2) and (3) are used to solve for the users’ optimal choice
of preventive portfolio (8;“[,8}_1.), where i in the following two
equations denotes those victim-specific variables,

(1-pi(1 = B))(1 - (821D

8= 5 ’ (13)
and

(1-pi(1=B)A =)D 4657
- 2 “a-pa-pgon MY

Besides p that depends on the comparison of ransom demand
and the victims’ willingness to pay, the optimal preventive port-
folio depends on three key factors: the potential data loss to the
victims, the cost of preventive measures, and the attacker’s proba-
bility of selling data with ransom payment. Throughout the simula-
tions we hold the attacker’s probability of returning files with ran-
som payment constant at 8, = 0.6 because the variable does not
affect the choice of preventive measures.

The optimal ransom is as defined in Eq. (8). The following equa-
tion is used to calculate the ransom used in each simulation,

R*:ﬂrv+(1—ﬁs)(1—5‘9)<1—(5f);>u (15)

where the variables with an upper-bar are the estimated means of
individual values of the victims.

4.2. Users’ optimal preventive portfolio

Users follow Egs. (13) and (14) to choose their optimal preven-
tive portfolio to maximize utility. The maximized utility is as in
Eqg. (1) where both the encryption rate and the fake data rate take
their optimal values. Since the first two terms in the equation do
not depend on the preventive portfolio, only the part of user utility
that depends on the choice of preventive portfolio is calculated,

1
up = —PBs(1=8;)(1—(8;)2)D; — (8;)° — (85,)° (16)
where u} 7.1 Tepresents the part of user i's utility that depends on
the user’s choice of preventive portfolio.
For illustration purpose we pick a representative victim whose
optimal portfolio is §;; = 15.4% and 5}’;1 =26.1% at Bs =0.1, and

u:'f_i = —0.3521 from Eq. (16).
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Fig. 1. Heatmap of user utility with combinations of encryption rate (8.) and fake
data rate (d5). The optimal portfolio commination with highest utility is highlighted
at —0.356.

The heatmap in Fig. 1 shows the value of u, ; at various com-
binations of &,; and &;; where both §,; and &;; take 10 dis-
crete values between 0 and 1. As shown, the worst case occurs
at full preventive portfolio. The maximized user utility occurs at
8%,~ 0.1 and d%; ~ 0.3, consistent with the mathematical model
using Egs. (13) and (14). The visualization is also useful in such
cases that suboptimal solutions may be desirable by moving away
from the optimal solution when users’ constraints evolve in dy-
namic environment.

Fig. 2 further illustrates how users choose their optimal pre-
ventive portfolio with marginal analysis specified by Eqgs. (2) and
(3). The curve of accumulative utility gain measures the accumu-
lative change in utility as the user continues to increase the rate
of encryption or the fake data, holding the other rate constant at
the optimal level. The intersection of the marginal cost and the
marginal benefit curves is the optimum point where the accumu-
lative gain in utility reaches the maximum. In this case, the utility-
maximizing rates of encryption and fake data are approximately
15% and 26%, respectively.

Fig. 3 shows individual users’ optimal preventive portfolio at
various probabilities of selling data (fs). Three representative users
are chosen with low, medium, and high market value of data. Sim-
ulation results generally match Eq. (13) since both preventive en-
cryption and preventive deception reduce data leakage loss. It ap-
pears that when the chance of data leakage is low and/or the data
has limited market value, users prioritize the utilization of data de-
ception. Increasing fake content may lower the needs of data en-
cryption. Users have the option to substitute one preventive mea-
sure for the other. When the attacker has a high probability of sell-
ing data and/or the market value of data is high, users may in-
crease the rates of both preventive measures.

Market value of data is the most important factor affecting the
users’ choice of optimal preventive portfolio. Fig. 4 shows indi-
vidual users’ optimal rates of encryption and fake data at various
Bs. The simulation results suggest that overall the optimal preven-
tion rates are increasing in the market value of data, and users
tend to increase both preventive measures when the attacker has
a high probability of selling data. Nevertheless, the positive rela-
tionship is less clear at low fS;. At Bs = 0.1, both encryption and
fake data rates increase initially as the market value of data in-
creases. Users adopt more deception than encryption because the
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Fig. 2. Marginal analysis of choosing optimal preventive portfolio composed of en-
cryption and fake data. The intersections of marginal cost and marginal benefit
curves determine the optimal rates of encryption or fake data, where the accumu-
lative gains in utility reach the maximum.

functional form of h(3 ) used in the simulation determines decep-
tion provides more protection effects than encryption at low level
of fake content. When fake data rate reaches a threshold, users ad-
just optimal preventive portfolio to use encryption to substitute for
fake data. As B increases, users have to increase both the encryp-
tion rate and fake data rate to prevent data loss. The findings are
consistent with Fig. 3.

4.3. Effect of preventive portfolio on user utility

In this simulation, we study the effect of prevention portfolio
on the expected payoff of the users/victims. In particular, we com-
pare the users’ expected payoff when they use the optimal preven-
tive portfolio and the expected payoff when no preventive measure
is used. The expected payoffs in various cases are listed in Table 2.

We compare user utility with and without preventive portfolio
at various Bs. Individual users’ composition of optimal preventive
portfolio is as shown in Fig. 3. With preventive portfolio, the ex-
pected payoff for the victims choosing p =1 is

u* = —R—04V — B(1-8:)(1- (5D — (5))? - (6})?
and the expected payoff for the victims choosing p =0 is

ut ==V — (1-8)(1-(8)%)D - (8 — (8})°
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Fig. 3. Optimal preventive portfolio of encryption and fake data of representative
users (with low, medium and high market value of data). The users may use one
preventive measure to substitute for the other at low B and/or low market value
of data, and may increase the rate of both preventive measures at high B; and/or
high market value of data.

In absence of preventive measures, the expected payoff for the
victims choosing p =1 is

u=-R-04V - gD
and the expected payoff for the victims choosing p =0 is
u=-V-D

The ransom demand in each case is equal to the mean of all
victims’ willingness to pay.

Fig. 5 illustrates individual users’ utility gain that is equal to the
difference between optimal user utility with and without preven-



Z. Li and Q. Liao

1.0
0.9 a AN M &
™ 5 a = -
0.8 A u *»
aane & w@® T
0.7 A AN o w * ® e
£
E o6
[
2 05 e Bs=0.1
|3
\g oA ¢ (s=0.3
= m 3s=0.6
0.3 n - o
WY e . ABs=0.8
0.2 A P .
» L)
0.1 ‘nm -
0.0
0 10 20 30 40 50
Market Value of Data
(a) market value vs. encryption rate
1.0
0.9 [ ] a A a ‘ ‘ “
= [ ]
v -
08 A aAM PR
* A gus S o O
[ *
0.7 A [ -
- ° ®
£ 0.6 - 4. P o
-4 ] + ° L]
m
£ 0. . €
E os ‘ oo L.
g ) : L] L ]
& o ¢ L] *
0.3 ¢
e
0.2 .
o1 e Bs=0.1 ePBs=0.3 mPBs=0.6 aPs=0.8
0.0
0 10 20 30 40 50

Market Value of Data
(b) market value vs. fake data
Fig. 4. Relationship between the market value of data and individual users’ optimal
choice of rates of encryption and fake data at various f;. Overall, fake data rate and

encryption rate are increasing in market value of data. At lower fs, users have a
choice to lowering one preventive measure by increasing the other.

50

a5 e
o 40 A
= A
E 3 M
< A L] b
g 30 - a
2 ™ &
@ 25 .
; n ¢ o @0 oo o
a .
T 20 i .
§ Agll o
£ 15 Ay o
™
[C) 20 ] L] ® Bs=0.1
| )
= ™ s’ mPs=0.4

& L ]

2 5 By A Bs=0.8

0

0 10 20 30 40 50

Market Value of Data

Fig. 5. Relationship between market value of data and users’ utility gain (i.e., utility
with preventive portfolio minus utility without preventive portfolio). In all cases,
users are better off with preventive portfolio. Overall, utility gain is increasing in
the market value of data at high f;.
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tive portfolio at Bs = 0.1, Bs = 0.4, and Bs = 0.8, respectively, in re-
lation to the market value of data. The preventive portfolio benefits
all users, and the gain in expected utility is overall increasing in
the market value of data, especially at high S;. That is, preventive
measures benefit more the users with valuable data. Nevertheless,
utility gain levels off at certain market value of data at low S;. The
marginal gain in utility tends to increase in S as the curve be-
comes steeper with rising fs.

Although the optimal composition of preventive portfolio
changes with B, at any fs, the victims receive a higher expected
payoff (or lower expected loss) when protected by the preven-
tive portfolio. The presence of preventive measures benefit the
users/victims. This is true for every individual user, even those who
choose low (or even zero) level of prevention. Those are the users
for whom the costs of preventive measures exceed the benefits.
They are better off as well when other users use preventive port-
folio. The presence of preventive measures generates positive ex-
ternality that provides social prevention insurance protecting all
the users. The effectiveness of preventive measures and mutual in-
surance requires effective communication. It can become a general
practice for users to publicly announce the adoption of preventive
measures, thus to form a common knowledge that user files may
be encrypted and data may be fake. The uncertainty would dis-
courage ransomware attackers and data buyers.

4.4. Effect of preventive measures on ransomware profit

The ransomware profit at the presence of preventive portfolio
can be written as
m 1
I =Ry xny +ﬂ52(] -8 (1 —8;)D,‘

i=1

N
+ 3 (1-8)(1-85)D;

i=n;+1

where the first term is the ransom profit, the last two terms mea-
sure the data profit, Ry is the optimal ransom request, and n; is
the number of victims choosing to pay the ransom at the presence
of preventive portfolio.

With no preventive measures the ransomware profit is

ny N
H2=Rz*n2+,3sZDi+ Z D;

i=1 i=ny+1

where R, is the optimal ransom request and n, is the number of
victims choosing to pay the ransom in absence of preventive port-
folio.

We choose a representative victim and compare how ransom
profit, data profit, and total ransomware profit the attacker may
receive from the victim change with the victim’s use of preventive
portfolio. The comparison in Fig. 6 suggests that as the encryption
and fake data increase, both data profit and ransom profit of the
attacker drop. At the presence of preventive portfolio, the overall
ransomware profit decreases significantly.

Fig. 7 analyzes the relationship between ransomware profit and
the data-selling rate with and without preventive portfolio. With-
out preventive portfolio, total ransomware profit increases as the
data-selling rate s increases. With preventive portfolio, however,
overall ransomware profit is reduced by more than two-thirds
(Fig. 7a), and the reduction is even more significant as the data-
selling rate B increases. The profit reduction of ransom compo-
nent decreases as the data-selling rate increases due to victims’
decreasing willingness to pay (Fig. 7b). Ransom request is much
lower than the no-prevention case as the attacker can no longer
use data as much as valid threat. Notably, the profit reduction in
the data component is the most significant, over 90% reduction as
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Fig. 6. Attacker’s ransomware profit received from a representative victim in re-
sponse to the victim’s changing composition of preventive portfolio. Presence of
encryption and deception not only reduces data profit, but also reduces ransom
profit, thus reducing overall ransomware profit significantly.

data-selling rate increases. With preventive portfolio, both ransom
profit and data profit (and thus total ransomware profit) decrease
as fs increases. Overall, the ransomware profit reduction (between
with and without preventive portfolio) widens as fs increases.
Finally, Fig. 8 further compares side-by-side the profitability of
ransomware (together with ransom and data component profit) at
various data-selling rate (s = 0.3, S5 = 0.6, and S = 0.8). Taking
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Bs = 0.6 for example, all three profits (ransom, data, ransomware)
decrease dramatically with preventive portfolio, with data profit
reduction being most significant. In absence of preventive mea-
sures, the attacker faces a tradeoff between ransom profit and data
profit, i.e.,, while data profit increases, ransom profit decreases,
hence total ransomware profit may go up and down when S
changes. At the presence of preventive measures, however, both
ransom profit and data profit decrease as B increases, hence to-
tal ransomware profit is always decreasing in Ss.

5. Conclusion

More research is needed for the inevitable data-selling ran-
somware which is harder to defend than traditional ransomware.
In this paper, we proposed a preventive portfolio that consists
of two preventive measures, i.e., preventive data encryption and
preventive data deception against the data-selling ransomware.
Through both game-theoretical modelings and extensive simula-
tion studies, we discovered the complex relationships between
users/victims and attackers considering various decision variables,
expected payoffs, strategy space and other parameters. The results
suggest the preventive portfolio is effective against data-selling
ransomware in that it can significantly decrease the profit of the
data-selling ransomware and increase the expected payoff of the
victims. Preventive portfolio not only dramatically decreases data
profit but ransom profit as well by decreasing the victims’ will-
ingness to pay thus reducing the ransom demand. Preventive mea-
sures have positive externality in the sense that some adoption of
preventive measures benefits all users. The practice also reduces
uncertainty and provides financial incentives for the attacker to
increase credibility or reputation. Our future work is to explore
other market-based solutions involving defensive buyers against
the data-selling ransomware.
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