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ABSTRACT. We construct new families of examples of (real) Anosov Lie alge-
bras, starting with algebraic units. We also give examples of indecomposable
Anosov Lie algebras (not a direct sum of proper Lie ideals) of dimension 13
and 16, and we conclude that for every n > 6 with n # 7 there exists an
indecomposable Anosov Lie algebra of dimension n.

1. Introduction. A diffeomorphism f of & compact differentiable manifold M is
called Anosov if it has a global hyperbolic behavior; i.e., the tangent bundle TA
admits & continuous invariant splitting TM = ET @ E™ such that df expands E*
and contracts £~ exponentially. This kind of diffeomorphism plays an important
and beautiful role in dynamics because they give examples of dynamical systems
with very nice properties, and it is then a natural problem to understand which are
the manifolds supporting them (see [16]).

Up to now, the only known examples are hyperbolic automorphisms on infranil-
manifolds (manifolds finitely covered by nilmanifolds), which are called Anosov au-
tomorphisms, and all their topological conjugates. Moreover, it is conjectured that
any Anosov diffeomorphism Is topologically conjugate to an Anosov automorphism
of a infranilmanifold (see [15]). The conjecture is known to be true in many par-
ticular cases; for example, J. Franks [6] and A. Manning [12] proved it for Anosov
diffeomorphisms on infranilmanifolds themselves.

We will say that an n-dimensional rational Lie algebra is Anosov if it admits a
hyperbolic automorphism 7 (i.e., none of the eigenvalues of 7 are of modulus 1) such
that [7]g € GLn(Z) for some basis 8 of n, where [r]s denotes the matrix of 7 with
respect to §. We say that a real Lie algebra is Anosov if it admits a rational form
which is Anosov. It is easy to observe that a real Lie algebra n is Anosov if it admits
a hyperbolic automorphism 7 such that [r]g € GL,(Z) for some Z-basis 8 of n (i.e.,
with integer structure constants), because one can always get a Z-basis by scaling
a Q-basis. Conversely, if a real Lie algebra n admits a hyperbolic automorphism =
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such that [7]g € GL,(Z) for some Z-basis 8 of n, it is Anosov since the Q-subspace
generated by 3 is an Anosov rational form of un.

It is well known that any Anosov Lie algebra. is necessarily nilpotent, and it is easy
to see that the classification of nilmanifolds, which admit an Anosov automorphism,
is essentially equivalent to that of Anosov Lie algebras (see [9, 2, 7, 4]).

Therefore, if one is interested in finding those Lie groups, which are simply
connected covers of an Anosov infranilmanifold, then the objects to find are real
nilpotent Lie algebras n supporting an Anosov automorphism.

Concerning the known examples besides the case of free nilpotent Lie algebras
(see [2]), there were only sporadic examples of Anosov Lie algebras before [9], where
it is proved that * = n @ --- @ n (m times, m > 2) is a real Anosov Lie algebra
for any graded Lie algebra n admitting a rational form. Also, in [3] other kinds of
examples are given in the context of certain two-step nilpotent Lie algebras attached
to graphs. In this way, there are in the literature examples of nonabelian Anosov real
Lie algebras for each dimension n > 6, with the exception of 7 and 13. Moreover,
in [3] the existence of an indecomposable n-dimensional 2-step Anosov Lie algebra
is proved for n > 6, except for n = 7,9,12,13,16. We recall that a Lie algebra is
said to be indecomposable if it cannot be expressed as a direct sum of proper Lie
ideals. It is known that there is no 7-dimensional Anosov Lie Algebra [10], and
for n = 9,12 there exists an indecomposable Anosov Lie algebra of dimension n
(see [9]). In fact, [9] gives a family of indecomposable 3r-dimensional Anosov Lie
algebras, r > 2.

In this paper we will give explicit families of examples of Anosov (real) Lie
algebras to illustrate a general procedure to construct Anosov Lie algebras, and as
an application we will give an indecomposable 13-dimensional Anosov Lie algebra.
In fact, for each pair of algebraic integers A, i of degree p and ¢ respectively which
satisfy the following conditions

1. they are units,

2. if we denote by {A = A1,...,Ap} and {g = g1, ..., g} the conjugates to A

and p respectively, then |\;| # 1 # |us], and

3. Dl # 1,
we will exhibit a type (pg+p,q) Anosov Lie algebra. This first construction is quite
easy to extend, and we are able to show examples of 3-step (and in fact of k-step)
Anosov Lie algebras; also, in the special case of p = 2 we give another example of
type (3¢, ¢ + 2) for any q.

Finally, we also give an example of an indecomposable 16-dimensional Anosov
Lie algebra, which allows us to conclude that for n > 6 {n $ 7), there exists an
indecomposable n-dimensional Anosov Lie algebra.

2. Examples. Given a nilpotent Lie algebra n, we call the ¢ype of n to the r-tuple
(n1, ., 1), where n; = dim C*(n}/C*(n) and C*(n) is the central descending
series. We also consider a decomposition n = n; @ ---n,, a direct sum of vector
spaces, such that C*(n) = n;41@ - -®n, for all . It is proven in {10] that if n is a real
Anosov Lie algebra of type (ni,...,mr), then there exists a hyperbolic A € Aut(n}
such that
(i) Anj=mn;foralli=1,..,r,
(ii) A is semisimple (in particular, A is diagonalizable over C), and
(ili) For each %, there exists a basis B; of n; such that [Asls, € SLn,(Z), where
n; = dimn; and A; = Aly,-
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It is important to mention that the existence of an Anosov automorphism is a
really strong condition on an infranilmanifold and also in a Lie algebra, and therefore
our approach is to start with a hyperbolic automorphism.

In this context, to show an example of an Anocsov Lie algebra, we are going to
construct a complex Lie algebra (to be able to work with eigenvalues) in such a way
that it admits a hyperbolic automorphism A such that [4]s € GL,(Z) for some
Z-basis 8 of n.

We begin by noting that if A and u are algebraic units of degree p and ¢ re-
spectively, and we denote by {A = A1,...,Ap} and {# = py,...,pq} the sets of
conjugates of A and u over Q respectively, it is not hard to see that {A;u;} are also

Arpr
algebraic units and, moreover, the mafrix [ . is conjugated to a matrix
Apliq

in GLipg(Z) with determinant 1.

Bearing this in mind, for each pair of non negative integers p # ¢ , we take the
Lie algebra n with basis 8 = {X1,..., Xp, Y1,..., Yy, Z1, ..., Z,}, and the non-zero
Lie brackets amongst these vectors are given by:

[Xip4s, Y5l = Zia 0<i<qg, 1Z25<p. (1)

It is clear that n is a two-step nilpotent Lie algebra. We take {X;,Y; : 1 < <
pg, 1 <j<p}asabasisof my and {Z: 1 <k < ¢} as a basis of no. Now, let 4
be an automorphism such that [A]z = [A‘ A ], where

[ Mg B

' Apm
ALpiz 1
) and A=

ATt Ha

Al t.
Aphg

T
Ap

We note that 5 is a basis of eigenvectors of A, Also, if we take A and x as above
and such that |X] % 1, [us} # 1 and [Ajpy| # 1 for all 4,7, then A is a hyperbolic
automorphism.

In what follows, we are going to show that n is an Anosov Lie algebra by con-
structing a Z-hasis of n preserved by A. In order to make the calculation more clear
we will make a small change in the notation. Let X(; ;) be the eigenvector of A cor-
responding to the eigenvalue A;z;. Note that this is only a reordering of the {X;}.
In fact, Xs,5) = X(j~1)p+i> and therefore we may say that 8 = {X(; 5, ¥, Z1: 1 <
i,k <p, 1<41< ¢} and (1) is now given by

(X, Yil = Z;. (2)




42 MEERA G. MAINKAR AND CYNTHIA E. WILL

Let 6 = { Xk, Y, Zs : 0 < 7k <p, 0< 8,1 < g} be the new basis of n given by

}4 q
Kooy =9, 9 M Xus 0<k<p 0<i<g,

i=1 j=1
?
Ve=D> NV 0<r<p,
k=1
a4
Zo=Y % 0<s<q.

t=1
To see¢ that this is actually a basis of n, it is enough to check that the sets
{Xwn}, {Yr} and {Z,} are linearly independent over C. Since all the calculations
are similar, we are only going to show how to proceed with {X(k,z) }. Suppose ar € C
such that

p—1g-1
0 = D> > audpy

k=0 {=0
p—lg-1 P g

= 3 D au | D> Mk X
k=0 (=0 i=1 j=1
P q [fp-lg-1

= ZZ (ZZakp\f,ug) X(i,j)-
i=1 j=1 \k=0 [=0

Hence, for 1 <4< p, 1 < j < ¢ we have that

p—=1 /gq-1
0=>" (Z“k‘”é) ME,

k=0 \!l=0

This can be seen, for each 1 < j < ¢ fixed, as a polynomial in A;. This polynomial
has degree at most p — 1, end it vanishes on each one of the );, so by our choice of
A it has p different roots and therefore is identically zero. Hence for 1 < § < ¢ we
have that its coefficients are zero. That is, for each 0 < k < p

g-1
0=2 aup
1=0

which is again a polynomial in j; of degree at most ¢ — 1 with ¢ different roots, and
therefore we can conclude that ag; = 0 for all k,1, as we wanted to show.

If :cI” +ap_12P7 14+ - g and 2P +bg129" 1+ - - +bg are the minimal polynomials
of A= and u respectively, it is not hard to check that

Vra1 r<p-1 Zop1 s<g—-1

AY, = p—1 ) AZ, = g—-1
=>4V r=p-1 Sz s=q-1
=0 =0

Note that a; and b; are all integers.

3
]
|
i
o
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Concerning X 1y, by the definition we have that for each 4,7,
k! — ykL L
A(X 121 X(i,j)) = Ai+ luj+ X

and therefore, for k <p—1and ! < ¢—1, AXp1y = Aes1,141)- In the same line of
the calculation done above, we have that
p—1
—ch X(k',H-l) k=p-11l<g¢g—1

AXgn =1 & ;

—Zb[ X(k'+1.l) k<p-1,1l=¢—-1
l=;z}-1 g—1

AXip-rq-y = =D > b Xgepys
k=11=1

where ¢; € Z are the coefficients of the minimal polynomial of A.

On the other hand, to see that the Lie bracket of any two elements of 8’ is a
linear combination of elements of 5 with integer coefficients, it is enough to check
it for [X(, Vr]. Using (2), we have that

P g
Fry: Vel = ZZA?‘J#‘; (X9, Y3

i=1 j=1

P q
(St) (2
=1 j=1

Mk, D)2
Ax
Here M(k,1) = tr A5, where 4y =

(3)

il

. Due to our choice of A\, Ay is

A
conjugated to a matrix in GL,(Z) and therefore so is AY for any m € N. Hence
M (k,1) is an integer number for any k,{, as we wanted to show.

Remark 2.1. Note that the Lie algebra n we have constructed does not depend on
the algebraic numbers A and y; it only depends on p and ¢, and moreover it is easy
to see (by looking at the dimension of the center, for example) that the Lie algebra
associated to (p, ¢) is not isomorphic to the one corresponding to (g, p) unless p = ¢.
We have obtained in this way two non isomorphic Anosov Lie algebras of dimension
n for all m = p.g + p + ¢, for any non negative integers p,q = 2. It is easy o check
that for p = 2 = ¢, we obtain the two step nilpotent Lie algebra g, of type (6,2)
given in [10].

Concerning the existence of algebraic numbers as we need, we refer to (11, pg-1).

‘We would like to point out, for further use, that n can be viewed as o @ V1 @ Z,
where Vp is the subspace generated by the {X(; 5}, Vi is the one spanned by the
{Y%}, and Z is the center. In this setup, Vo acts on V1 & Z, as it is stated in {2).

Example 2.2. As anew example, we can carry out the calculations forp =3, ¢ =2
to obtain the 11-dimensional Lie algebra with basis

8 ={X1,...,Xe,Y1,Y2,Y3, %1, Z2}
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and Lie bracket among them given by

(XN =2y [Xo,Yo]=21 [X3,Y3]=2

4)
(XY =22 (X5, Vo]=2y (X3, V3] = Zo.

The hyperbolic antomorphism A is given by [A]g = [‘4‘ Az]’ where

HA2
KAz
27\

Ay

I
®
[y
-
&
I
A
.:\

In this case we have obtained a Lie algebra of type (9,2); also note that for
p =2, ¢ =3 we obtain s Lie algebra of type (8, 3). We would like to point out that
here and in general, we can add a non zero constant to the Lie brackets in (4), but
it is easy to see that this leads to isomorphic Lie algebras.

Once we have stated the general picture, let us consider an analogous procedure
by starting from two algebraic units A and p. In this case, by following essentially
the same procedure as above, we can construct a two step nilpotent Anosov Lie
algebra of type (p + ¢,pq), where the eigenvalues of the corresponding A; are the
conjugated numbers to A and u, and the ones corresponding to As are all the
products among them, {A;x;}. It is not hard to see that this algebra is isomorphic
to the one associated to a bipartite graph (p,¢), which is proved to be Anosov in
[3]. In this case, a lot of changes can be made to this procedure to obtain a variety
of new examples. Among them we are now going to mention a few more, and since
the proofs are essentially the same, they will be omitted.

Example 2.3. As above, one can start by taking three algebraic units A,z and v
of degree p, ¢, and r respectively, such that the conjugate numbers to each of them
satisfy [Aapes| # 1, [Aar] # 1 and |vpps] # 1. It is not hard to see that we can
proceed analogously by considering the pair Ap and v, with (pg,r) the degree of Au.
In fact, in the proof of the linear independence of the new basis, and also in (3), we
only use the fact that we are adding over all the conjugated numbers to A and .
Following the lines of the above procedure, we then obtain an Anosov Lie algebra,
Npg,r) Of type (pgr + 7, pg). Moreover, once we have stated this, it is clear that it is
also true for Av and g, (pr,¢), and in this case our procedure leads to a Lie algebra
of type (prq+q,pr).

Now, it is clear that in each of these algebras, Npg,ry and Ny oy, the eigenvalues of
the associated automorphism corresponding to Xk, are the same, that is, Ajp v,
for some 1,7,s. Therefore, the corresponding subspaces V5 can be identified (see
Remark 2.1). In this case, it is easy to see that a new algebra can be constructed
from these two by identifying the Vo. Explicitly, if Nipg,ry = Vo®@WVi®Z1 and nep gy =
Vo®V2® Za, let n be the Lie algebra with vector space n = (V@ Vi @ Vo) @ (2,6 Z2),
where the action is as before: [Vg, V;] C Z;, 4 = 1,2. This is a two step nilpotent Lie
algebra of type (pgr -+ ¢+ r,pr + pq). In this framework, there is a natural way to
define an antomorphism in n, using the ones in ngyq . and te g : [Alg = [* Az]’
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where
[ A1p1tr T

Apttqin

Az

~1
p o

A

- e
A2 - Arpa

Apiiy
It is easy to check that due to our choice of A, g and v, it is hyperbolic. On the other
hand, note that in both cases the lattice we have constructed in Vg, X,y are the
same (it is just a matter of notation), and therefore, as with the automorphism, the
natural extension of the lattice we have in n(,,,y and Wpr,g) I8 a Z-basis preserved
by A; hence n is an Anosov Lie Algebra. :
In this way we obtain two step Anosov Lie algebras of dimension n = pgr + pg+
pr -+ g+ r for any p,¢,r. Distinguishing them by the type, it is easy to see that
in general, if p # ¢ # r then the Lie algebra one obtains by interchanging the roll
of p, ¢ and r is not isomorphic. The smallest one we can construct corresponds to
p=g=r=2,is 18§ dimensional, and its type is (10, 8).
It is not hard to see that this procedure extends in a natural way to considering
k algebraic units in order to obtain a 2-step Anosov Lie algebra.

Example 2.4. Now we are going to show how to use the procedure to construct
three-step Anosov Lie algebras. As before, we take algebraic numbers A, ¢ and v of
degree p, g, and r respectively.

. . . Ay
In this case we have in mind A = [ Az
3

. ], where A; and Ay are as in the
A1
previous example, and 4z = . As before, we are going to make a small
\ :
change in the notation in order to be Consistent with the eigenvalues. Let n be the
Lie algebra with basis
B={X(gx) Ys: Zs Vi), Wiy Ui 1 1< i< p, 1< 5 < g, 1<k <7}

and the Lie bracket among them be given by

(X5.30, Yim] = 8(5,m) Viaoy (X001 Znl = S0,y Wz

[Zn: V)] = SniyUs [Yon, Wi 1y] = S¢m, 1y U

It is easy to see that n is a three-step nilpotent Lie algebra; that is, it satisfies
Jacobi identities, and the type of n is (pgr + ¢ + r,pr + pg,p). Let A denote the

A
linear transformation of n such that {4]s = { YA 4 ]; hence, A is a hyperbolic
3
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and define the Lie bracket among them by

X, Y] =21 (X4, Y1) =Wy
[X2, V2] = Z2 [X5,Ya] = Wa (8)
[X3,Y3] = —(Z1 + Z3) [Xs, Ya] = — (W1 + Wa).

This is a two-step nilpotent Lie algebra of type (9,4). Let A be the automorphism
of n such that [A]s = [* , ], where

Ay

N
A = A us - R Ay = [ A(\_l :| .
At
1

Concerning the lattice, we will take {X;}, 0 < ¢ <5 and {Yx}, 0 < k < 2, as in the
previous example, and let

2

Zi=> (i —ub) (Zi+ W) {=-1,1,
=1
2

Wi= (s —uh) A Z+A7T W) I=-1,1
i=1

To see that this is a basis of n, as we have pointed out before, it is enough to
check that each one of {X;}, {¥;} and {2 Wi} are linearly independent sets. We
also note that the calculations for the first two sets have already been done, and
then we are only going to show how to proceed in the center. Suppose then that

0= aaZa+taZ +o W1 +W
2

. Z[ (uit — 13 ") (a1 + Aboa) + (pf — p3) (o2 + }\bl)] Zs
i=1
2
[ = ) (e A0 o (= 1) (o + A0 | s
i=1

Hence, for ¢ = 1,2 we have that

0= (" — u37) (amy + A1) + (uf — 23) {aa + Aby),

)]
0= (47 = 45%) (dmn + A720m2) + (1 — ) (02 4+ A P)

1f we denote
Py(x) =27  (am1 + Nbo1) +x (ag 4 A1),

then by the first equation we have that Py(u;) = Py(uy;) = C for i, = 1,2,3.
Hence,

(a1 + Ab_y) + 22 (a1 + Aby) — Cz (10)

is a degree two polynomial annihilated by each one of the y;. Since these are three
different algebraic numbers, we have that (10) is identically zero. In particular,

0={(a—1+Ab_y) and O=(a1+ ). (11)
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We can do the same for the second equation in (9}, and we will obtain
0={a-1+A"b1) and 0= (a1+A"'8). (12)
Finally, from {11) and (12) we can conclude that
-1 =b_y1=a;=b =0,

as was to be shown.
One can also see for i = 1 or 2 (let's say i = 1 for simplicity) that

=3 = (- pa)(p1+ ps)

]

(1 — ps) (b1 — (papa) ™)

]

t1 (1 — pa) + (o7 — u3),
where t; = tr A7, is an integer number for all j € Z, and pg = (p103) L. Therefore,

2
S{u2 ~ i) (Zi+ Wi) =021 + 2.1

=1
In the same way, we also have that
2

37 (uE - 13) (AZi+ XTIWE) = oW, + WL

i=1

It is also easy to see that this is valid for fo;” 2_ 132 as well; that is, we have formulas
similar to these ones for

2
Do —uz?) (M 2+ XIW),

i=1
for j =0,1.

Also, as in the previous examples, it is not hard to see that this is a basis of n
preserved by A. With all this, one can check that

[0, Y] =0 (5, 0] =0
(X1, V0] = 2, [, Yol = W,
(A2, 0] =t1Z1+ 2.0 [A5, Do) = taWh + W

(Ao, ] =21 (Ko, Vo] = t_121 + Z1.

Using this and the fact that A is an automorphism, it is easy to prove that this
is a Z~basis of n. For example,

(A2, Va] = {AXy, AD%]
= A[AXO, Ayl]
= A(AZ,)

=AW_oy) = —aW_y —~ 2.y,
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where 22 + az + 1 is the minimal polynomial of A. Therefore, we can conclude that
this is a Anosov Lie algebra, as desired. In the following we will prove, by using
similar arguments as in Lemma 6.6 of [3], that it is also indecomposable.

Proposition 3.1. n, defined by the relations given by (8), is indecomposable.

Proof. Suppose on the contrary that n = my @mg is the sum of two nontrivial ideals
of n. By definition, we have that n = V @ W, where V is the subspace spanned
by the set § = {X1,...,Xs,Y1,Y2,Y3} and W is the subspace of n spanned by
{Z1,Z9, W1, Wa}. Let p:n — V be the projection onto V' with respect to this
decomposition n =V & W, and let Vi = p(m1} and V2 = p(mz). For i =1,2 let

Si={vesS: v+ Z ay v’ € V; for some scalars a.'s}.
v €5,v %y

Then S = §1 U Ss, and since m; and mo are nontrivial ideals, it is easy to see
that S and Sy are nonempty sets. Moreover, we have that Sz \ 51 is empty. In
fact, if Sy \ S; is nonempty, we can either have that [v,v'] is zero for all v € S5\ $1
and v’ € S1, or there exists v € S5 \ 51 and v € Sy such that [v,v'] is nonzero.

In the first situation, as S = $; U 93, we may assume that Y3 is contained in
S:. Then there exists nonzero @ such that a¥; + z € Vi, where z is contained in
the span of S\ {Yi}. Since my is an ideal, and [aY; + z, Xi] and [aY1 + @, X4)
are contained in my, this means that Z;, Wi € my. We notice that not all ¥/'s are
contained in Sy because if all ¥'s are contained in S1, then (by our assumption)
all X}s are contained in 1, and hence Sa \ i is empty. Now either Y2 € S or
Y2 € $2\ 81, If Y € S (a similar argument works for the other case), then Y3 must
be contained in Sa\ Si. In that case Z» and Wa are contained in my (by considering
Lie brackets with Xz and Xs), and similarly Z; 4+ Z3 and W + Wa are contained
in my. This is a contradiction.

On the other hand, if there exists v € S; \ S; and v' € S such that [v,v'] is
nonzero, it is easy to see that if v € {V1,Y2, Y3}, then v/ € {X1,... Xg}, and if
v € {X1,...Xs}, then v' € {¥1,Y2,Y3}. So since it is entirely equivalent, we can
assume that v € {¥1,Y2,Y3} and v = ¥;. Moreover, either v/ = X3 or v/ = Xy,
and therefore we may assume that ' = X;. From our definition of S;, there exist
nonzero scalars s and £ such that sX; +z is contained in V; and ¢Y; +¥ is contained
in V2, where z is in the subspace of V spanned by Y1,Y2,Y5, Xs,..., Xs and y is in
the subspace of V spanned by Y2, Ya, X1, X3, ..., Xs. Hence [sX; +=,Y7] € my and
[tY1 + v, X1, Y2 + v, X4] € my, since my and mg are Lie ideals of n. This implies
that sZ1 + s'Wi € my, where s’ is a scalar and Z1, W € mg. This is a contradiction
because 8 is nonzero, and thus we can conclude that Sy \ 51 is empty.

Therefore we have that S = S, and moreover we can see that Z;, Z2, Wi, Wy
are contained in mj. Hence [mj,m;] = [n,n], and from this one has that ms is in
the center of n.

On the other hand, it is easy to see that the center is equal to [n,n] = W, and
hence mj is contained in m,, contradicting our assumption that my is nontrivial.
Hence n cannot be seen as a sum of two proper ideals, as we wanted to show. {J

4. 16-dimensional example. Let (S, E) denote the complete bipartite graph on
a set S of § elements partitioned into subsets 1 and Sy of 2 and 3 elements,
respectively. Following for example (3], we can define from this (and any graph)
a 2-step nilpotent Lie algebra. Let A/ = V & W denote the 2-step nilpotent Lie

gt T
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algebra associated with (S, E), where V is the vector space with a basis S and W is
the subspace of A2V spanned by {a A8 : o € 81,8 € S2}. The nonzero Lie brackets
are given by [, 8] = a A [ for all @ € Sy and § € S. We recall that in this case
we obtain an Anosov Lie algebra of type (5,6) (see [3]). Using this algebra, we are
going to construct a 16-dimensional Anosov Lie algebra as follows.

Let n be that Lie algebra with linear space n = V @ V @ W and Lie bracket
be defined by [(z1,Z2, w), (¥1,¥y2,w")] = [z1,y1] + [z2, y2], where @;'s and y;’s are
vectors in V, w,w’ € W and [z, y;] denotes the Lie bracket in /. To see that it is an
Anosov Lie algebra, let us consider ®, the additive subgroup of n generated by the
elements of the type (v,0,0), (0,7/,0), (0,0, [v,d]), where v,v',7,8 € §. It is easy
to see that @ is a Z-subalgebra of n ( i.e., ® is the set of all Z-linear combinations
of the basis of n with integer structure coefficients}, and moreover that n admits a
hyperbolic automorphism 7 such that 7(®) = ®. In fact, if @’ is a subgroup of N/
generated by SU {[v,v'] : v,v’ € S}, then N admits a hyperbolic automorphism 7/
such that 7/(®') = ® (see [3], Theorem 1.1). The matrix of 7/|y with respect to
the basis S US> is given by

A= [Al Az}’

where 41 € GL(2,Z) and Ay € GL(3,Z) are hyperbolic such that the pairwise
products Au, A and p are the eigenvalues of A; and Ag, respectively, and are not
of absolute value 1. A can be extended to an Anosov automorphism 7/ of A such
that 7/(®') == ®’. We take 7 to be the natural extension of 7/ to n. Hence n is an
Anosov Lie algebra.

Proposition 4.1. n, defined as above, is indecomposable.

Proof. Let Sy = {, 8} and Sa = {v,d,7}. Suppose that m; and my are two proper
ideals of n such that n = m; @ms. Seeing as [n, n] = [m1, m1]@[m2, mo] and [n, n] is 6-
dimensional, we may assume that dim {my, mq} < 3. Let X = (v,v/,w) € my, where
v,v' € Vandw € W. Let v =3 .o acg. Because my is an ideal, [X,(£,0,0)] € ny
for all £ € S. Hence ayy A&+ asé A&+ ayn A& and aga A¢ +apf A¢ are contained
in [my, my] for all € € S and ¢ € S2. As dim {my, m1] < 3, we see that either ag¢ =0
for all £ € Sy or a; =0 for all ¢ € Sa. Let Vi (respectively V3) denote the subspace
of V spanned by S; (respectively S3). Then by the above observation, v € V3 or
v € Va.

Suppose v € Vj. We will prove that my is contained in V; & V' @ W. Suppose
that v # 0. Then the vectors aqa A¢ +agBA¢ € [my,my] for all ¢ € 5 are linearly
independent. Hence dim [my,m;] = 3. Suppose (v3,v],w1) € my be such that vy €
Va. Let vy = afyfy+ag§+a’nn. Now as dim [my, my] = 3, and @, yAa+azdAata,nAa
and a/,y A B+ a5d A B+ ayn A B are contained in [m1, m1], @, = a5 = o, = 0. Hence
v; = 0. Thus we have proved that if v € V1, then m; is contained in Vi @V @ W.
Similarly we prove that if v € V4, then m; is contained in VoV @W. Supposev € Va
and v # 0. Let (v1,9},w1) € my be such that v; € Vi, and writev; = a’aa+a:@ﬁ. We
note that ab,aA(+apBA¢ € [my, m] for all ¢ € Sa. If the vectors ajaA(+alGAC are
linearly independent for all ¢ € S3, then dim [my, m;] = 3. This is a contradiction
since ayy Aa+ asd Ao+ ayn Ao and ay A B+ asé A B+ apn A 8 are contained in
(my,my]. Hence af, = aj = 0, and so v1 = 0. Thus if v € V3, then m; is contained
in V2 @ V& W. Similarly we can prove that my is contained in V& Vi @ W or
V& VadW. Hence my is contained in V; & V; @ W for some 4, j € {1,2}. But then
[my,ny] = 0, which is a contradiction. This proves the proposition. 0
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ABSTRACT. For weakly damped non-autonomous hyperbolic equations, we introduce a
new concept Condition (C*), denote the set of all functions satisfying Condition (C*) by
L2,(R; X) which are translation bounded but not translation compact in L?M(R;X), and
show that there are many functions satisfying Condition (C*); then we study the uniform
attractors for weakly damped non-autonomous hyperbolic equations with this new class of
time dependent external forces g(x,t) € L2,(R; X)-and prove the existence of the uniform
attractors for the family of processes corresponding to the equation in H, é x L? and D(A) x
HE.

1. Introduction. We consider the following weakly damped non-autonomous
hyperbolic equation

2
%Jra%—éwrf(u):g(w,t), uoa =0, z€Q, (1.1)

where {} is an open bounded subset of R” with sufficiently smooth boundary, « is

a positive constant, and f is a C! function from R to R satisfying the following
conditions:

lim inf @ > 0; (1.2)
fs|—oo0 8

: f(s)
lim suy =0, 1.3)
|s|~oop |3|’¥ (

with0 <y <ooifn=12and0<v< 25 if n > 3. Here, F is the primitive
function of f:

F(s) = /0 " fryar.

Furthermore, there exists a C1(> 0) such that

timing & ZGF() 5 (1.4)
|s|—ec 8§
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