Chapter 3 Test: Topics to review.

To prepare for the Chapter 3 test, make sure you know how to do the following.

1. Numeration

Base 10

Name base-10 pieces and explain their value [for example: a unit is $10^{\circ}=1$, a flat is $10^{2}=100$, a longflat is ... etc.].

What number follows the number 19 (in base 10)? Explain using manipulatives (cubes) and the placevalue table.

Represent a number with appropriate base-10 pieces and use the pieces to explain the expanded form of the number. Example: Draw Base-10 pieces to represent the numbers 356, 1032, 3321, ... etc. Write these numbers in expanded form. (The expanded form of 356 is $3 \cdot 10^{2}+5 \cdot 10^{1}+6 \cdot 10^{0}$ or $3 \cdot 100+$ $5 \cdot 10+6 \cdot 1$)

Round off a number. Example: Round off the number 749 to the nearest ten.

Other number base systems (pages 61-64 in the book)

Given a base-10 number (number of cubes), write down a corresponding number in a different base systems and explain the conversion using manipulatives (regrouping and exchanging cubes, longs, flats...). Example: How is the number 17 written in base- 5 system? How about number 13 in base-2 system ? Etc. [Answers: $17=32_{\text {five }}, 13=1101_{\text {two }}$]

Write a base-n number in its expanded form. How can the expanded form be used to find the value in base-10? Examples: What is $33_{\text {five }}$ in base-10? What is $1010_{\text {two }}$ in base-10? [Answers: $33_{\text {five }}=18$, $1010_{\text {two }}=10$;]

Count in other base systems. Example: List 5 numbers preceding and 5 numbers succeeding the numbers: $555_{\text {six }},{10000_{\text {two }}, 1001_{\text {four }} \text {. }}^{\text {. }}$

What's wrong with the following numerals? $352_{\text {five }}, 702_{\text {two }}$ etc....

2. Addition and Subtraction

In Base-10

Find the following sums and explain your solution using the model given in the parentheses. 7 + 6 (number-line model - "arrows"), $9+4$ (sets), $23-5$ (number-line - "hopping").

Basic addition facts: Use basic addition facts to find $9+8$ [Answer: for example $9+(1+7)=(9+1)+7$ $=10+7=17$. Used basic fact strategies: adding to $10(9+1)$, adding $10(10+7)$, associative property $]$.

Demonstrate the three methods of subtraction - Take away, Missing Addend and Comparison (see also page 77-78)

Properties of addition and subtraction:
Is the table of basic addition facts symmetrical about a diagonal? Why? Why is the number 0 special with respect to addition? Is subtraction an associative operation? Explain. Etc...

Use "Scratch algorithm" to add the numbers: $234+45+56+73+21$
Use the "lattice" method to calculate $2345+5432$.
Solve $234+34$ using the "standard" and "expanded" algorithm. Compare their length and complexity.
Solve 4321-543 using the "standard", "Austrian", "equal addends", and "nines-complement" algorithm.

Other Bases (pages 71-78):

Fill in the table of basic addition facts in base 6 . Do not use base-10 to fill it in; use manipulatives and the place-value table instead (for example use cubes to explain why $4_{\text {six }}+4_{\text {six }}=12_{\text {six }}$). Use the table to find $453_{\text {six }}+23_{\text {six }}$. Solve the same problem using manipulatives and the place-value table. [Answer: $520_{\text {six }}$]

Subtract each of the following and explain your solution using the model given in the parentheses. $32_{\text {six }}-5_{\text {six }}=$ (take away), $24_{\text {five }}-13_{\text {five }}=$ (missing addend) , $1325_{\text {seven }}-211_{\text {seven }}$ (comparison) .

3. Multiplication and Division (pages 81-94)

Find the following products and explain your solution using the model/manipulatives given in the parentheses. $7 \cdot 3$ (number-line model), $19 \cdot 4$ (base 10 pieces), $32 \cdot 43$ (base-10 pieces or "multiplication grid" and the place-value table).

Formulate a typical word problem, which can be solved using a tree diagram (Cartesian-product model; make up your own, don't use the "burger" problem from the class).

Explain the distributive property of multiplication over addition.

- Solve 234.34 using the "standard" and "expanded" algorithm. Compare their length and complexity.
- Use the "Lattice method" and solve 45,602 • 12 .
- Explain how we can use fingers to find 4.9. Use a different "finger" method to find $6 \cdot 8$

Solve division problems using sharing, measurement and area method. (page 88, 91)

Formulate the definition of division and use it to solve the following problems:
$0 \div 7,7 \div 0$ and $0 \div 0$. Explain your answers.
Apply the standard algorithm of division ("long division") to solve $4352 \div 26$.
Use the "bottles in boxes" story to explain how to solve $144 \div 6$ using long division.
Use area model (Multiplication grid or base-10 pieces) to divide the above numbers (see also page 94).

