## List of sets (for work with Attribute Pieces)

Set $\mathrm{L} \quad$ is the set of all large pieces
Set $\mathrm{S} \quad$ is the set of all small pieces
Set Y is the set of all yellow pieces
Set $R \quad$ is the set of all red pieces
Set B is the set of all blue pieces
Set H is the set of all hexagons
Set T is the set of all triangles
Set $\mathrm{Q} \quad$ is the set of all squares
Set C is the set of all circles
Set ST is the set of all small triangles
Set BT is the set of all blue triangles
Set BH has all blue hexagons
Set BC has all blue circles
Set BQ has all blue squares
Set LQ has all large squares
Set NR is the set of all pieces which are not red
Set NT is the set of all pieces which are not triangles
Set M is the set of two pieces: SRT and SBT
Set O contains all small blue pieces which are neither circles, squares nor triangles
Set $\mathrm{P} \quad$ contains all hexagonal pieces that are neither blue nor red
Set X is the set of all small pieces that are neither circles, squares nor hexagons

Which of the following pairs of sets of attribute pieces are equal, disjoint or one is a subset of another (or neither case)? Write the relationships using symbols $\subseteq, \subset,=, \supset, \supseteq$ or write that the sets are disjoint. Find also if the sets are equivalent.

- T \& BT
- L \& M
- BT \& M
- BH \& O
- L \& S
- P \& Y
- ST \& R
- S \& M

Find the resulting set in each of the following cases (if it is not possible to describe it by letters, use words). How many elements does it have? Draw Venn diagrams if necessary.
$\mathrm{L} \cap \mathrm{R}=$
$\mathrm{S} \cup \mathrm{L}=$
$\mathrm{S} \cap \mathrm{L}=$
$\mathrm{BT} \cup \mathrm{BH} \cup \mathrm{BC} \cup \mathrm{BQ}=$
$\mathrm{H}-\mathrm{NR}=$
$\mathrm{NR}=$
$(\mathrm{L}-\mathrm{R})-\mathrm{Y}=$
$\mathrm{M} \cap \mathrm{R}=$
$(M \cup B T)-B=$

