Symbols and notation for construction logs - REFERENCE

Notation:

Points: A, B, C, ...

Rays: $\overrightarrow{A B}, \overleftarrow{X Y}$
Direction of the arrow indicates the ray's origin (in this example, point A and Y are the origin (endpoint)).

Lines: $\overleftrightarrow{A B}, \overleftrightarrow{X Y}$ or $\mathrm{a}, \mathrm{p}, \ldots$

Angles: $\angle \mathrm{AVB}$ or $\alpha, \beta, \gamma, \delta, \theta, \omega, \ldots$ The vertex of the angle is always listed in the middle.

Line Segments: $A B, X Y$ or a, b,

Circles: k, l, m, ...;
when specifying center and radius use parentheses: $\mathrm{k}(\mathrm{C}, \mathrm{AB})$ or $\mathrm{k}(\mathrm{C}, 3 \mathrm{~cm})$

Symbols:

"such that":	Belongs to, Lies on $: \in$	Does not belong to: \notin	
Intersection: \cap	Union: \cup	Perpendicular: \perp	
Parallel: $\\|$	AND $: \wedge \underset{\text { (logical connectives) }}{ }$	Midpoint:	

Useful examples:

$\mathrm{X}, \mathrm{Z} \mid\{\mathrm{XY}\}=\mathrm{k} \cap \overrightarrow{A B}$	Mark two points X, Z at the intersections of the circle k and ray $A B$
$p \mid p \perp n \wedge P \in p$	Draw a line p such that it is perpendicular to a (given) line n and goes through a (given) point P
$\mathrm{M} \mid \mathrm{M}=\mathrm{A} \bullet \mathrm{B}$	Construct a point M as the midpoint between A and B
$k \mid k(C, r)$	Construct a circle k with the center C and any radius r
$\mathrm{k} \left\lvert\, \mathrm{k}\left(\mathrm{C}, r>\frac{\|A B\|}{2}\right)\right.$	Construct a circle k with the center C and a radius greater than a half of the length of line segment $A B$
1. $k \mid k(C, r)$ 2. $m \mid m(B, r)$	Construct two circles k and m centered at C and B and with the same radius r
1. $k \mid k(C, r)$ 2. $m \mid m\left(B, r^{\prime}\right)$	This indicates that the two circles may have different radii
1. $k \mid k(C, r)$ 2. $m \mid m\left(B, r^{\prime} \neq r\right)$	This indicates that the two circles must have different radii

If you need to indicate measures, the "absolute value" symbol:

$A B\|\|A B\|=3 \mathrm{~cm}$	Construct a line segment $A B$ whose length is 3 cm
$\angle A V B\left\|\|\angle A V B\|=60^{\circ}\right.$	Construct an angle $A V B$ (V is the vertex) the measure of which is 60°

You do not need to use the „absolute value" sign when using lowercase or greek letters:
$\alpha \mid \alpha=35^{\circ}$
Construct an angle α measuring 35°
b | $b=5 \mathrm{~cm}$
Construct a line segment b measuring 5 cm

