Quality factor dependence on vertical slab structure in photonic crystal double heterostructure resonant cavities

Adam Mock and John O'Brien
Microphotonic Device Group
University of Southern California

July 13, 2009

Session: IMF2
Integrated Photonics and Nanophotonics Research and Applications 2009
Honolulu, HI, USA
Outline

- Photonic crystal double heterostructure cavity and edge-emitting lasers
- Heat-sinking lower substrates for continuous-wave operation
- Novel cavity design for reduced out-of-plane radiation
- Comment on designs for electrically addressed photonic crystal lasers
Photonic crystal double heterostructure cavities

Photonic crystal double heterostructure resonant cavity

- Q factor $\sim 10^5 - 10^6$
- Mode volume $\sim (\lambda/n)^3$

Song, et al. Nat. Mat. 4 207 (2005)

Good candidate for efficient, small-footprint on-chip optical source

Calculated using parallelized 3-D FDTD

$H_z(x,y,z=0)$

> 100 μW peak output power

Optically pumped photonic crystal lasers

- photonic crystal lattice
- defect waveguide
- thin suspended membrane 250nm

Pulsed optical pump allows sufficient carrier excitation with reduced heating.

material damage from high power optical pump

optical pump beam

CW pumped membrane
Heat-sinking lower substrates

Dielectric substrate acts as a heat sink allowing room temperature CW laser operation.

<table>
<thead>
<tr>
<th></th>
<th>Air</th>
<th>SiO$_2$</th>
<th>Sapphire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity:</td>
<td>2.5x10^-5</td>
<td>0.015</td>
<td>0.5 (W/cm – K)</td>
</tr>
</tbody>
</table>

Dielectric substrate acts as a heat sink allowing room temperature CW laser operation.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (W/cm – K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>2.5x10^{-4}</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.015</td>
</tr>
<tr>
<td>Sapphire</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Edge-emitting substrate bonded CW laser
Dependence of Q factor on substrate index

![Graph showing the dependence of Q factor on substrate index. The y-axis represents the quality factor with a scale ranging from 10^2 to 10^7, and the x-axis represents the substrate refractive index ranging from 1.0 to 2.0. The graph exhibits a decreasing trend as the substrate refractive index increases.]

- Substrate
- Patterned semiconductor slab
- Heterostructure cavity
Dependence of Q factor on substrate index

\[
\frac{1}{Q_{\text{tot}}} = \frac{1}{Q_{\text{WG}}} + \frac{1}{Q_{\text{PC}}} + \frac{1}{Q_{\text{air}}} + \frac{1}{Q_{\text{substrate}}}
\]
Strategy for reducing out-of-plane radiation

Type A cavity

Type B cavity

- $a/2$ lattice shift leads to π phase shift between the two sides of the cavity

- out of phase components interfere destructively along the waveguide axis

Dependence of Q factor on substrate index

Total Q limited by waveguide Q for substrate index < 1.5

Total Q limited by substrate Q for substrate index > 1.5
Dependence of Q factor on substrate index

Type A cavity

Type B cavity

Laser threshold
• Electrical addressing scheme is necessary if PC lasers are to be a useful device for integrated photonics

Toward electrically pumped PC lasers

- Electrical addressing scheme is necessary if PC lasers are to be a useful device for integrated photonics
- Recent design proposals employ a semiconductor based p-i-n diode vertical slab geometry
- Small index contrast (3.4 – 3.2 for InP and GaAs alloys)

Can the Type B heterostructure geometry mitigate the out-of-plane radiation?

Toward electrically pumped PC lasers

- Electrical addressing scheme is necessary if PC lasers are to be a useful device for integrated photonics
- Recent design proposals employ a semiconductor based p-i-n diode vertical slab geometry
- Small index contrast (3.4 – 3.2 for InP and GaAs alloys)

Can the Type B heterostructure geometry mitigate the out-of-plane radiation?

Electrical Injection Scheme Using Edge-emitting Heterostructure Cavity

- p-doped top cladding $n = 3.2$
- n-doped substrate $n = 3.2$
- active region (e.g. quantum wells) $n=3.4$
- electrical contact (metal)
Dependence of Q factor on vertical slab structure

- Top cladding layer to preserve vertical symmetry (5x improvement in Q)
- Deeply etched photonic crystal hole patterns (10x improvement in Q)
Dependence of Q factor on vertical slab structure

$Q > 1000$ for $n < 2.2$

- still unable to maintain a high Q factor for a substrate refractive index of 3.2
- alternative substrates such as GaN and SiC may be used in initial demonstrations

![Diagram of a vertical slab structure with labeled layers and curves representing Q factor vs. refractive index.]
Conclusion

- Photonic crystal heterostructure microcavities for edge-emitting lasers

- Type B cavity design with reduced out-of-plane radiation for CW laser operation

- Electrically addressed PC lasers with semiconductor diode based vertical slab structure

Acknowledge support from NSF and DARPA
Numerical computation was performed at the University of Southern California Center for High Performance Computing and Communications
Symmetric vertical cladding

In-plane Q 10x larger for symmetric cladding

Out-of-plane Q 2x larger for symmetric cladding
Intuitive picture of field dynamics in response to gain
Cavity design: reducing in-plane leakage

Perturbation breaks glide-plane symmetry and allows coupling between overlapping waveguide bands