Extracting Large Quality Factors in Photonic Crystal Double Heterostructure Cavities Using the Padé Method

Adam Mock and John O'Brien
University of Southern California
Microphotonic Device Group
September 2, 2008
NUSOD - TuB3
High quality factor photonic crystal cavities

D1 cavity, $Q \sim 10^6$

L3 cavity, $Q \sim 10^5$

PCDH cavity, $Q \sim 10^6\text{-}10^9$

H. Y. Ryu, M. Notomi, Y. H. Lee
Appl. Phys. Lett. 83 4294 2003

Y. Akahane, T. Asano, B.-S. Song, S. Noda
Nature 425 944 2005

B.-S. Song, S. Noda, T. Asano,
Y. Akahane
Nature Materials 4 207 2005

| Biological and chemical sensors |
| Slow light (optical memory and buffers) |
| Lasers and filters for chip-scale photonic integration |
Photonic crystal double heterostructure lasers and cavities

>100μW edge-emitting output power

bound state formation near dispersion extrema

CLEO paper CMV3 (2007).

A. Mock, L. Lu, J. O’Brien
Presentation outline

Finite-Difference Time-Domain numerical simulation technique

Optical loss in photonic crystal resonant cavities

Discrete Fourier transform + Padé interpolation method for quality factor estimation

Application to photonic crystal double heterostructure cavities
Finite-difference time-domain analysis of photonic crystal resonant cavities

Discretized spatial derivatives

\[
\frac{\partial D_x^{i, j+1/2, k+1/2}}{\partial t} = \frac{1}{\Delta y} \left(H_z^{i, j+1, k+1/2} - H_z^{i, j, k+1/2} \right) - \frac{1}{\Delta z} \left(H_y^{i, j+1/2, k+1} - H_y^{i, j+1/2, k} \right)
\]

\[
\frac{\partial B_x^{i-1/2, j+1, k+1}}{\partial t} = \frac{1}{\Delta z} \left(E_y^{i-1/2, j+1, k+3/2} - E_y^{i-1/2, j+1, k+1/2} \right) - \frac{1}{\Delta y} \left(E_z^{i-1/2, j+3/2, k+1} - E_z^{i-1/2, j+1/2, k+1} \right)
\]

Discretized time derivatives

\[
\frac{\partial D_x^{i, j+1/2, k+1/2}}{\partial t} = \left[\varepsilon \frac{E_x^{n+1/2} - E_x^{n-1/2}}{\Delta t} \right]^{i, j+1/2, k+1/2}
\]

\[
\frac{\partial B_x^{i-1/2, j+1, k+1}}{\partial t} = \left[\mu \frac{H_x^{n+1} - H_x^n}{\Delta t} \right]^{i-1/2, j+1, k+1}
\]

FDTD simulation parameters

\[
\Delta t \leq \frac{\Delta x}{c \sqrt{3}} \quad \Delta t = 0.87 \frac{\Delta x}{c \sqrt{3}}
\]

\[
\Delta x = \frac{a}{20} \quad \text{Effectively 40 samples per lattice constant}
\]
Numerical analysis method

- Broadband initial condition to excite all cavity resonances
- Propagate the fields in time for 10^5 FDTD time steps
- 15 layers of PML on all boundaries to absorb leaky radiation from the cavity
- Spectral analysis using discrete Fourier transform on resulting time sequence
Photonic crystal double heterostructure resonant cavities

\[\omega \]

\[H_z(x,y) \]

20 PCWG periods each side
8 PC rows top and bottom

Computational resources
950 x 340 x 200 spatial points
100 processors
20 hours for 200k time steps
Photonic crystal double heterostructure: Free spectral range

A. Mock, L. Lu, J. O’Brien

$H_z(x, y)$
Leakage mechanisms in PCDH cavities

Out-of-plane: wavevector components not totally internally reflected
In-plane: finite number of photonic crystal cladding periods
 finite number of photonic crystal waveguide periods

\[\frac{P(\text{out-of-plane})}{P(\text{in-plane})} = 1.8 \]
\[\frac{P(\text{waveguide})}{P(\text{pc cladding})} = 0.2 \]

20 PCWG periods each side
8 PC rows top and bottom
Methods of calculating the quality factor

- Physical definition of Q

$$Q = \omega_0 \frac{\langle U \rangle}{\langle \frac{dU}{dt} \rangle}$$

- Damped cosine time function (Filter Diagonalization)

$$f[n] = f_0 e^{-\omega_0 n \Delta t / 2Q} \cos(\omega_0 n \Delta t)$$

- Fourier transform is a Lorentzian function (Padé interpolation)

$$F(\omega) = \frac{f_0 / 2}{\omega_0 \frac{\omega_0}{2Q} - i(\omega - \omega_0)}$$

$$Q = \frac{\omega_0}{\Delta \omega}$$
Discrete Fourier transform resolution

\[\Delta f = \frac{1}{N \Delta t} \]

\[f[n] = f_0 e^{-\omega_0 n \Delta t / 2Q} \cos(\omega_0 n \Delta t) \]
Discrete Fourier transform resolution

$Q = 10000$

amplitude decreased to 0.98 after 10k time steps
Padé interpolation method

\[
\begin{align*}
\frac{\alpha_0 + \alpha_1 \omega_s + \alpha_2 \omega_s^2 + \ldots + \alpha_M \omega_s^M}{\beta_0 + \beta_1 \omega_s + \beta_2 \omega_s^2 + \ldots + \beta_N \omega_s^N} &= \frac{Q_M(\omega_s)}{D_N(\omega_s)} = F(\omega_s) \\
\end{align*}
\]

where \(\omega_s = s \Delta \omega \) is the \(s \)th DFT frequency sample

setting \(\beta_0 = 1 \) and multiplying both sides by the denominator yields

\[
\begin{align*}
\alpha_0 + \alpha_1 \omega_s + \alpha_2 \omega_s^2 + \ldots + \alpha_M \omega_s^M &= F(\omega_s)(1 + \beta_1 \omega_s + \beta_2 \omega_s^2 + \ldots + \beta_N \omega_s^N) \\
\alpha_0 + \alpha_1 \omega_s + \alpha_2 \omega_s^2 + \ldots + \alpha_M \omega_s^M - F(\omega_s)(\beta_1 \omega_s + \beta_2 \omega_s^2 + \ldots + \beta_N \omega_s^N) &= F(\omega_s) \\
\end{align*}
\]

M+1 \(\alpha \)-terms and N \(\beta \)-terms

linear equation with M+N+1 unknowns which requires M+N+1 DFT frequency samples for a unique solution

Padé interpolation method for Lorentzian lineshapes

General Padé function

\[
P(M,N) = \frac{Q_M(\omega_s)}{D_N(\omega_s)} = \frac{\alpha_0 + \alpha_1 \omega_s + \alpha_2 \omega_s^2 + \ldots + \alpha_M \omega_s^M}{\beta_0 + \beta_1 \omega_s + \beta_2 \omega_s^2 + \ldots + \beta_N \omega_s^N}
\]

Damped cosine time function has Lorentzian function Fourier transform

\[
f(t) = f_0 e^{-\omega_0 t/2Q} \cos(\omega_0 t) \quad \leftrightarrow \quad F(\omega) = \frac{f_0/2}{\omega_0/2Q - i(\omega-\omega_0)}
\]

Padé function corresponding to Lorentzian form

\[
P(0,1) = \frac{\alpha_0}{1 + \beta_1 \omega} = \frac{-i \alpha_0 / \beta_1}{-i/\beta_1 - i \omega} = \frac{-i \alpha_0 / \beta_1}{-i/\beta_1 - i \omega_0 - i(\omega-\omega_0)}
\]

\[
-i/\beta_1 - i \omega_0 = \frac{\omega_0}{2Q}
\]
Padé convergence – user defined time sequence

\[-i/\beta_i - i\omega_0 = \frac{\omega_0}{2Q}\]

\[1/\beta_i + \omega_0 = i \frac{\omega_0}{2Q}\]

Complex number \rightarrow Real number \rightarrow Imaginary number

\[\text{Re}\{1/\beta_i\} = -\omega_0\]

\[\text{Im}\{1/\beta_i\} = \frac{\omega_0}{2Q}\]

\[Q = \frac{-\text{Re}\{1/\beta_i\}}{2\text{Im}\{1/\beta_i\}}\]

Quality Factor (Q)

Time Step (x1000)

Q = 10^6
Q = 10^5
Q = 10^4
For $P(0,1)$, the Padé method requires $M+N+1 = 0 + 1 + 1 = 2$ DFT frequency samples for a unique solution

For $P(1,1)$, the Padé method requires $M+N+1 = 1 + 1 + 1 = 3$ DFT frequency samples for a unique solution

\[P(1,1) = \frac{\alpha_0 + \alpha_1 \omega}{1 + \beta_1 \omega} = \frac{\alpha_1}{\beta_1} + \frac{\alpha_0 - \alpha_1 / \beta_1}{1 + \beta_1 \omega} \]

\[\text{Re}\{1/\beta_1\} = -\omega_0 \]
\[\text{Im}\{1/\beta_1\} = \frac{\omega_0}{2Q} \rightarrow Q = \frac{-\text{Re}\{1/\beta_1\}}{2\text{Im}\{1/\beta_1\}} \]
For \(P(0,1) \), the Padé method requires
\[M+N+1 = 0 + 1 + 1 = 2 \]
DFT frequency samples for a unique solution.

For \(P(1,1) \), the Padé method requires
\[M+N+1 = 1 + 1 + 1 = 3 \]
DFT frequency samples for a unique solution.

\[
P(1,1) = \frac{\alpha_0 + \alpha_1 \omega}{1 + \beta_1 \omega} = \frac{\alpha_1}{\beta_1} + \frac{\alpha_0 - \alpha_1 / \beta_1}{1 + \beta_1 \omega}
\]

\[
\text{Re}\{1/\beta_1\} = -\omega_0
\]
\[
\text{Im}\{1/\beta_1\} = \frac{\omega_0}{2Q} \quad \rightarrow \quad Q = \frac{-\text{Re}\{1/\beta_1\}}{2\text{Im}\{1/\beta_1\}}
\]
Padé convergence – user defined time sequence with two resonances

\[P(2,2) = \frac{\alpha_0 + \alpha_1 \omega + \alpha_2 \omega^2}{1 + \beta_1 \omega + \beta_2 \omega^2} = \frac{\alpha_2}{\beta_2} \left(\frac{\alpha_0 + \alpha_1 - \frac{\alpha_2}{\beta_2} \omega}{1 + \beta_1 \omega + \beta_2 \omega^2} \right) \]

\[P(2,2) = \frac{\alpha_2}{\beta_2} + \frac{C_1}{\frac{\omega_1}{2Q_1} - i(\omega - \omega_1)} + \frac{C_2}{\frac{\omega_2}{2Q_2} - i(\omega - \omega_2)} \]
Padé convergence – FDTD analyzed PCDH cavity

- 10k time step transient removed
- Converged $Q = 336.7k$
- $< 1\%$ fluctuation in the unshaded portion
- 10k transient + 50k for $P(3,3)$, $P(3,4)$, $P(4,4)$
Verification of Q value using complementary methods

Explicit calculation

\[f[n] = e^{-\omega_0 n \Delta t / 2Q} \]

\[Q = \omega_0 \frac{\langle U \rangle}{\langle \frac{dU}{dt} \rangle} \]

Padé $Q = 336.7k$

Energy density $Q = 329.3k$
Comparison between Padé and filter diagonalization method

Filter-Diagonalization

ab-initio.mit.edu/harminv/
Summary

FDTD analysis of PCDH cavities
Time sequence length – spectral resolution
Convergence properties of different Padé functions
Application to photonic crystal double heterostructure cavities

Acknowledgements
Defense Advanced Research Projects Agency (DARPA)
National Science Foundation (NSF)
University of Southern California Center for High Performance Computing and Communications (USC HPCC)