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Abstract 

P E D X  is a newly developed interactive computer program 
for the radial-distribution-function analysis of measured 
energy-dispersive X-ray diffraction (EDXD) data from 
disordered systems. The program is furnished with efficient 
computing procedures and all the standard data for 96 
neutral atoms necessary for the calculations. With the help 
of PEDX,  the rather involved EDXD data processing is 
reduced to a routine operation. 

1. Introduction 

The atomic-scale structure of a disordered system such as 
a liquid or a glass is commonly described in terms of the 
radial distribution function (RDF). The widely used reduced 
RDF, G(r), which gives the probability of finding an atom 
at a distance r from a reference atom, is defined as 

G(r) = 4nr[p(r) - Po], (1) 

where r is the radial distance and p(r) and Po are the local 
and the average atomic number densities, respectively. The 
reduced RDF corresponds to the Fourier transform of only 
the coherent diffraction spectrum of a disordered system, i.e. 

G(r) = (2/rcl~s[i(s) - 1] sin (st) ds, (2) 
0 

where i(s) is the so-called interference function, obtained 
directly from a diffraction experiment by properly correcting 
and normalizing the coherent X-ray scattering intensities, 
and s is the wave vector defined by the relation 
s = (4rt/).) sin 0 = (4rt/hc)E sin 0. ). and E are the wavelength 
and the energy of the radiation used, h is Planck's 
constant, c is the velocity of light and 20 is the angle between 
the directions of the incident and diffracted X-rays. In 
order to calculate the RDF, the coherent X-ray scattering 
intensity as a function of s, I = l(s), has to be experimentally 
obtained from a system of interest and properly reduced to 
i = i(s), which is an immediate task for any structural study 
of disordered systems. There are two experimental 
approaches to this task, since the wave vector s is a function 
of both diffraction angle and energy. With so-called 
"angle-dispersive X-ray diffraction' (ADXD), usually em- 
ployed in the past, the dependence of the scattered intensity 
on s is obtained by using monochromatic radiation 
(2 = constant, E = constant) and varying the diffrac- 
tion angle 20. In principle, the same functional dependence 
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can be detected by utilizing white radiation with a 
continuous energy spectrum (2, E # constant) and keeping 
the diffraction angle fixed. This experimental approach has 
been called 'energy-dispersive X-ray diffraction' (EDXD), 
since the diffracted intensities are recorded as a function 
of energy, E. Several important advantages of EDXD 
over conventional ADXD can be outlined. Relatively 
rapid data collection is possible because: the total 
intensity of the white radiation is higher than that of 
the characteristic monochromatic radiation; fluctuations in 
the X-ray source do not affect the experimental data quality 
since all diffracted X-ray photons of different energies are 
collected simultaneously; no mechanical moving parts are 
required since the energy scanning is done electronically 
by the detector system. This results in freedom from the 
danger of optical misalignment. The use of higher energies, 
up to 50 keV, makes it possible to obtain the diffraction 
spectrum and consequently the interference function in the 
higher-wave-vector region up to 25A -1. It may be 
noted, for comparison, that the energy of the most 
commonly used Mo K~ characteristic radiation is 
17.48 keV, so with the ADXD method the interference 
function is usually obtained up to 16A -~ only. The 
latter advantage of EDXD is quite significant, since 
the larger the range of s over which i(s) values are 
obtained, the better the resolution of the correspond- 
ing radial distribution function and, hence, the more 
detailed the structural features of the disordered system 
under study that can be revealed. 

Several researchers have demonstrated the advan- 
tages of EDXD in studying disordered systems. In their 
pioneering work, Prober & Schultz (1975) determined 
the structure of liquid mercury. Murata & Nishikawa 
(1978) and Nishikawa & lijima (1984) have studied 
the structure of liquid CC14 with the greatest possible 
care. The structure changes of liquid bismuth during 
its solidification have been investigated by Momiuchi 
(1986). Tamura (1990) and Hosokawa, Matsuoka & 
Tamura (1991) have employed the EDXD method in 
a high-pressure study of the structure of liquid selenium and 
mercury. Radial distribution analysis of a series of oxide 
glasses has been carried out by Ozawa & Uno (1986), 
Hanson & Egami (1986) and McKeown (1987). Structural 
studies of various metallic glasses have been reported by 
Egami (1978, 1979) and Aur & Egami (1980). Other 
investigations have been carried out by Wagner, Lee, Tai & 
Keller (1981), Hoving, Egami, Vincze & Woude (1987) and 
Utz, Brunsch, Lampartcr & Steeb (1989). 

, Two experimental problems, however, prevent us 
from completely fulfilling the attractive potential of 

i EDXD. The first is a result of the relative complexity 
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of the EDXD equipment system. With EDXD, the 
diffracted radiation is detected by an energy-sensitive 
detector, which must possess a good energy resolution. This 
has been a problem. However, with the advance of modern 
semiconductor technology, solid-state detectors (Li-drifted 
Si and intrinsic Ge) with energy resolutions AE/E of a few 
percent, which are quite satisfactory for structural studies on 
disordered systems, have become commercially available. 
The same situation holds for the complex electronics units 
(amplifier, multichannel pulse-height analyzer etc.) comple- 
mentary to the detector. Thus, the problem of the 
experimental set-up has been overcome and the EDXD 
equipment can be assembled without much difficulty at 
present. The second problem arises from the fact that the 
measured EDXD spectrum consists of diffracted X-ray 
photons of different energies, which makes the data 
processing quite involved. Some pioneering procedures for 
EDXD data processing have already been developed in 
computer programs (Aur, 1981; Hoving, 1986). However, 
these have been oriented towards some specific research 
demands and are not always convenient for general 
use. It is the purpose of the present work to develop proper 
computational procedures for EDXD data processing, 
which, coupled with the available EDXD equipment, 
will make EDXD studies on disordered systems as 
easy and routine as conventional ADXD. 

2. Theoretical background 

The total intensity of X-rays scattered from a sample 
and its environment, as a function of energy E (i.e. of 
wave vector s), at a fixed diffraction angle 20, is given 
by 

I(E, O) = C(E)e,(E)[I~oh(E, O) + I~n~(E, E', O) 

+ lms(E, E', O) + lair(E, O) + lce.(E, 0)], (3) 

where C(E) is a normalization factor; e(E) is the detector 
efficiency factor; the first three terms in the brackets refer 
to the intensities of coherent (single), incoherent (single) and 
multiple scattering from the sample, respectively; the last 
two terms refer to those scattered by air and the sample 
container, respectively; E' is the initial energy of the 
incoming X-ray photons, which is reduced to E in the 
incoherent (Compton) scattering process. The relation 
between E and E' can conveniently be expressed by 

E' = E/[1 - 0.00392(E sin 2 0)] (4) 

if E and E' are given in units of keY (Wagner, 1978). 
The quantity of interest is the intensity scattered by 

the sample alone, so the total EDXD spectrum has to 
be corrected for the scattering due to the specific 
sample environment. In this program, the air and 
container scattering corrections are performed by well 
established and commonly applied procedures (Wagner, 
1978; Waseda, 1980, pp. 27-36). They are not reproduced 
here since they have been described in detail in the literature 
referred to. 

Another contribution to the total EDXD experi- 
mental spectrum that must be accounted for is the 
result of double, triple and higher-order scattering, i.e. 
radiation that, before reaching the detector, has been 
scattered two or more times by different volume 

elements in the sample. We considered only the doubly 
scattered radiation, since it represents the major part 
of the multiple scattering. The approximate numerical 
integration method developed by Malet, Cabos, Escande 
& Delord (1973) was employed for calculating the ratio of 
the intensities of double and single coherent scattering. 
The quite complex mathematical expressions are not 
duplicated here. An estimate for the significance of the 
multiple-scattering correction in EDXD data analysis is 
given in the next section. 

The EDXD spectrum contains contributions from 
both coherently and incoherently singly scattered X-ray 
photons, i.e. some fraction of all the detected photons of 
energy E comes from incoherently scattered photons with 
initial energy E', which is larger than E. The incoherent 
singly scattered intensity l~,c(E, E', 0) can be calculated 
using 

Ii,c(E, E', 0 )= Io(E'JA(E, E', O)P(E, E', O) 

x R(E, E')(dE'/dE)l~¢(s'), (5) 

where lo(E' ) is the incident X-ray beam intensity; 
A(E, E', O) and P(E, E', 0) are absorption and polariza- 
tion correction factors, respectively; R(E, E') is the 
Breit-Dirac recoil factor; dE'/dE is a correction factor 
accounting for the incoherent EDXD spectrum contraction; 
li~¢(s') is the incoherent singly scattered intensity per atom; 
s' is the length of the wave vector, s ' =  (4n/hc)E'sin 0. 
It has been shown that the correction factor dE'/dE exactly 
cancels the Breit-Dirac recoil factor R(E, E'), so 
d(E'/dE)R(E, E ' )=  l for the EDXD experiment (Egami, 
1978). 

The polarization factor for a continuous energy 
X-rays can be written as follows (Aur, 1981): 

P(E, E', O) = [(E/E') + (E'/E) - sin 2 20]/2 

+ [x(E) sin 2 20-1/2, (6) 

where 7z(E) is a measure of the degree of polarization 
of the incident white X-rays. When a sealed tube is 
used as an X-ray source, it is customary for it to be 
tilted at 45 ~" to the plane of the incident and diffracted 
X-ray beams in order to get rid of the energy 
dependence of the polarization factor (Olsen, Buras, 
Jensen, Alstrup, Gerward & Selsmark, 1978; Egami, 
1979). In addition to this standard experimental case 
when x(E)= 0, we have also included the cases when 
7z(E) = 4-1, which correspond to synchrotron-radiation 
diffraction experiments carried out in vertical and 
horizontal scattering planes, respectively, as options 
in the present version of the program. 

Analytical expressions of the absorption factor A(E, E', 0), 
for both transmission and reflection geometry, are taken 
from Wagner's (1978) scheme. A knowledge of the energy 
dependence of the linear absorption coefficients, It = p(E), 
is, however, a prerequisite to their application. Mass 
absorption coefficients p/p and X-ray anomalous-dispersion 
factors f '  and f "  for 96 neutral atoms have been 
estimated in the energy range between 1 and 50keY 
(Waseda, 1984) and are available as numerical data. 
On the basis of these values we created a compact 
data base (500kbytes; binary data format) containing 
ll(E)/p and f '(E) and f" (E)  data for all atomic species 
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from lithium to californium. The coefficients of the 
analytical expressions for the usual atomic scattering 
factors, f o  derived by Cromer & Waber (1965) have 
also been stored in the program PEDX. Accounting 
for the specific energy range and the sample composi- 
tion, PEDX extracts from the data base and the table of 
fo  values the data necessary for the calculations. 

Theoretical values of l~o~(s') have been calculated 
by Cromer & Mann (1967) and Cromer (1969) for all 
elements in the Periodic Table. On the basis of these 
values, Thijsse (1984) has derived a simple semiempir- 

a ,~.' ical computational expression for I~,,~(. ) that has been 
used in the present program. 

The coherent contribution to all the X-ray photons 
scattered once by the sample is 

l~oh(E, O) = Io(E)P(E, E, O)A(E, E, 0)l~oh(S}, (7} 

where lo(E) is the intensity of the incident X-rays of 
energy E; P(E,E,O) and A(E,E,O) are the aforemen- 
tioned polarization and absorption correction factors, 

a 5; respectively; and l,oh(,) is the coherent singly scattered 
intensity per atom the only structure-dependent part 
of the total EDXD spectrum. In order for /~,,h(s) to 
be determined, the coherent diffraction intensities, /~oh(E, 0), 
have to be extracted from the total experimental EDXD 
spectrum by accounting for all other contributions to it in 
the manner already described. Furthermore, the incident 
X-ray beam intensity Io(E), the detector efficiency ~:(E) and 
the normalization factor C(E) must be known, since the 
coherent diffraction intensities are to be normalized 
against their product. Unfortunately, direct determi- 
nation of lo(E) as a function of the photon energy E 
is not a easy task. It is particularly difficult to obtain 
lo(E) values with an accuracy sufficient for the structural 
determination of disordered systems (Nishikawa & lijima, 
1984; Uno & lshigaki, 1984). However, some methods of 
estimating lo(E) quite accurately from the measured EDXD 
spectrum of the sample have been reported (Egami, 1978: 
Wagner, Lee, Tai & Keller, 1981; Fritch & Wagner, 1986) 
and the procedure proposed by Wagner, Lee, Tai & Keller 
(1981) was adopted in this program. The derivation of the 
quantity lp(E)= C(E)e{E}Io(E), hereafter referred to as 
the spectrum of the incident radiation beam, is described in 
more detail in §3. 

3. Outline of the program P E D X  

The program PEDX consists of five subroutines (DATA- 
SET, BEAMCAL,  DATACOR,  I N T E R F  and DISTRF; see 
Fig. 1), in which separate steps of the radial-distribution- 
function analysis of measured EDXD data are performed. 

3.1. 7he D A T A S E T  subroutine 

The D A T A S E T  subroutine creates data files containing 
the values of standard physical quantities and the relevant 
experimental parameters involved in the computational 
scheme described in the previous section. Data, supplied by 
the user that describe the disordered system under study and 
the specific experimental conditions are included in a 
parameter data file. These data are as follows: the number of 
atomic species (up to six) constituting the sample; their 
atomic concentrations ci and periodic atomic numbers; the 

average atomic density and the thickness of the sample; the 
same characteristic data for the sample substrate or 
container (if used): the type of geometry of the experimental 
set-up (both symmetrical reflection and transmission 
geometry are supported); the degree of polarization of the 
incident X-ray beam [g(e)= 0, -T-13: the use of additional 
filters. The parameter file also includes the number of 
channels (maximum 1024) of the multichannel pulse-height 
analyzer coupled to the solid-state detector and the 
energy-calibration constants necessary to convert a 
channel number into an appropriate energy value. The 
energy-calibration constants are either known a priori 
and supplied by the user or are calculated by PEDX 
on the basis of data extracted from standard EDXD 
spectra made up of X-ray fluorescent lines with accurately 
known energies. The energy-calibration constants stored in 
the parameter data lile are obtained by the application of 
a linear least-squares fit of these known energies to the 
corresponding channel numbers. 

In accordance with the characteristic data supplied 
to the parameter data file, the DAT"ASET subroutine 
generates two supplementary data files, the first containing 
the mass absorption coefficients l~(Ej/p, the second the 
anomalous-dispersion factorsf'(E) and f"(E) for the atomic 
species constituting the sample. The data are extracted from 
the data base described in §2. 

With the solid-state detectors used in EDXD experiments, 
an escape-peak effect is observed which is due to the 
fluorescence of the detector material (Fukamachi, Togawa 
& Hosoya, 1973). The effect can be estimated by measuring 
the Bragg diffraction peaks and their escape peaks from a 
(mono)crystalline material. Once supplied with appropriate 
experimental data, the DA T A S E T  subroutine calculates and 
stores in a data file an escape-peak correction function. 
The correction of the EDXD data for the escape-peak 
effect is made in the subsequent steps of the data 
analysis with the use of the correction function in a 
way described by Aur (1981) and Nishikawa & lijima 
(1984). 

......... - t  1 

B EAM CAL 

• I 

[. INTERF ] 

) 
Fig. 1. Flow chart of the PEDX program. The contents of the 

individual steps are described in the text. 
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Additional filters placed in the incident or diffracted 
X-ray beams are sometimes used to cut out or reduce 
the strong fluorescent lines that interfere with the 
EDXD spectrum. The effect of filter absorption on the 
EDXD experimental data can be accounted for by 
measuring diffraction peaks from a well crystallized 
material with and without filters, calculating the ratio 
of the corresponding intensities as a function of energy 
(channel number) and subsequently multiplying the 
EDXD data by the correction function obtained. An 
option for calculating a filter-absorption correction 
function is provided in the D A T A S E T  subroutine. The 
necessary experimental data (pairs of Bragg diffraction 
intensities) are supplied by the user and the resulting 
correction function is stored in a separate data file. 

All data files created in this step are given appropriate 
names by which they are automatically accessed in the 
course of the program execution. For convenience, all data 
input to the PEDX program are listed in Table 1. 

3.2. "/he B E A M C A L  subroutine 

The spectrum of the incident radiation beam, lp = Ip(E), 
is calculated in the B E A M C A L  subroutine. The method 
employed is that developed by Wagner, Lee, Tai & Keller 
(1981). It is based on the fact that the X-ray photons 
scattered by the sample are only a small fraction of the 
EDXD intensities obtained at higher diffraction angles (say 
20 > 80°), so the measured EDXD spectrum will show only 
small modulations about lp(E). 

At higher diffraction angles, the coherent single 
scattering contribution to the EDXD spectrum, l~oh(S), 
can be well approximated by the so-called independent 
scattering. 

( f 2 )  = ~ c,f2(s, E) 

= ~., c,[f°(s) + f '(E)] 2 + E c ; [ f  ''(E)]2, (8) 

where {f°(s);f'(E)}i and f"(E)i are the real and imaginary 
parts, respectively, of the atomic scattering factor {f(s, E)}i 
of the ith atomic species in the system of interest. With this 
assumption, (3) reduces to the following expression for large 
values of 20, i.e. of s: 

lcor(E, O)= I,(E)[A(E, E, O)PtE, E, 0 ) ( f  2) + Ires(E, E, 0)] 

+ lp(E')[A(E, E', O)P(E, E', O)li~.~(s')], (9) 

where l~or(E, O) is the EDXD intensity already corrected for 
air and sample-container scattering and I,..,(E, E, O) is the 
coherent multiple scattering term. This equation can be 
solved for the unknown quantity Ip(E) and written in the 
following two equivalent forms" 

lp(E) = Icon(E, O)/{A(E, E, O)P(E, E, 0)<f2> + lm~(E, E, O) 
+ Ip(E')/Ip(E)[A(E', E, O)P(E, E', O)l~.~(s')]} • 

(10a) 

lp(E') = Ico,(E, O)/{A(E, E' O)P(E, E', O)li~,~(s ') 
+ Ip(E)/Ip(E')[A(E, E, O)P(E, E, O)(f  z ) 
+ lm~(E, E, 0)]}. (10b) 

When the coherent contribution to l¢o~(E,O) domi- 
nates, which is the case for a system composed of heavy 
elements, the spectrum of the incident radiation beam 

Tab le  1. Input data for  the P E D X  program 

Sample data 
Atomic numbers of the sample constituents 
Atomic concentrations of individual constituents 
Sample density and thickness 

Experimental conditions 
Type of geometry. 
Degree of polarization of the incident radiation beam 
Number of channels 
Energy-calibration constants 

Auxiliary data* 
Filter absorption 
Escape-peak effect 

Experimental EDXD data 
EDXD data from the sample 
EDXD data from the sample environment* 

*Optional. 

is calculated on the basis of (10a), with the initial 
assumption that lp(E')/lp(E)= 1. On the other hand, 
when the system under study is composed of light 
atomic species, the incoherent contribution to loot(E, O) 
dominates and the spectrum of the incident radiation 
beam is calculated on the basis of (10b), with the initial 
assumption that lp(E)/lp(E')=O. In both cases, the 
values of the spectrum of the incident radiation beam 
are refined through an iterative procedure (Wagner, 
Lee, Tai & Keller, 1981). The Ip(E) data obtained are 
smoothed, approximated by a fifth-order polynomial 
function to eliminate spurious oscillations occurring 
at very low and very high energies and stored in a 
data file. The quality of the spectrum of the incident 
radiation beam calculated can be judged by the next 
step of the EDXD data analysis in which the same 
higher-angle EDXD data are corrected and norma- 
lized and a segment of the interference function i(s) is 
calculated on their basis. Correct physical behavior 
of i(s), which should oscillate uniformly around i(s)= 1, 
indicates that the lp(E) data are of good quality. 

It should be emphasized that the spectrum of the 
incident radiation beam determined by the present 
method is highly dependent on the specific EDXD 
data used. Fig. 2 shows the spectrum of an X-ray beam 
emitted by a W tube (operated at 50keV, 38mA) 
obtained from the measured EDXD intensity of SiO2 
glass collected at 20 = 80 ° with and without the 
coherent multiple scattering term, lms( E, E, O), in the 
computational scheme. As one can see in Fig. 3, the 
coherent multiple (double) scattering contribution is 
a considerable fraction of the EDXD spectrum for the 
experimental conditions - symmetrical reflection geometry, 
7 mm thick SiO 2 sample. However, the resultant lp(E) curves 
depicted in Fig. 2 are of a similar shape, although it should 
be noted that there is a difference of a few percent in their 
numerical values. The lp(E) values obtained from the EDXD 
intensity of liquid mercury are also shown in Fig. 2 and they 
are larger by almost one order of magnitude than 
those from silica glass. In summary, the spectrum of 
the incident radiation beam obtained from a measured 
EDXD intensity of a given sample can be used 
straightforwardly in the further EDXD data analysis 
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of the same sample only. In addition, the same EDXD 
data-correction procedure should be employed in both 
the derivation of the lp(E) values and the subsequent 
EDXD data processing. 

3.3. "/-he DATACOR subroutine 

The correction of the raw EDXD data and the 
extraction from them of the structure-dependent part 
alone are performed by the DATACOR subroutine. 
With the EDXD experiments, the diffracted X-ray 
photons are detected by a solid-state detector and 
processed by a multichannel analyzer. The intensities 
obtained are in fact collected as a function of channel 
number, so these are transferred in energy space using 
the initially determined energy-calibration constants at 
first. Then the EDXD data are corrected for air and 
container scattering if proper supplementary experi- 
ments have been carried out. With the use of previously 
calculated correction functions, the filter absorption and 
escape-peak effect are properly accounted for. The 
incoherent and multiple-scattering contributions are 
(optionally) estimated (see §2) and subtracted from the 
corrected experimental data. The residual is just the 
coherently scattered intensities, which, after correction for 
polarization, absorption and rescaling against the incident 
radiation beam intensity lp(E), are converted to l~oh(S). 
The coherent single scattering data, l~,h(S)., , are smoothed 
by the well known method of Savitzky & Golay (1964), 
recalculated in equidistant steps of As = 0.025 A - '  from 
Sm~, = (l.0135E,~m) sin 0 to sm~, = (l.0135Em~0 sin 0, where 
Emi n and E ~  (in keV) are the minimum and maximum 
values, respectively, of the energy for which the spectrum 
of the incident radiation beam has been accurately deter- 
mined. Finally, the most frequently used Faber-Ziman, 

~zlS) = { / i o , ( S ) -  [~ , . , f~-  (~ c,LV]}/(Y~ ,,,j;)< (~) 

or Ashcroft-Langreth, 

/Ads)  = l{oh(s}/~ c , f ~ ,  (12) 

types of interference function (Waseda, 1980, pp. 7-17) are 
computed in the range of s values from s,,,~, to Sma, 
and stored in separate data files. Raw EDXD data 
and the corresponding segments of the Faber-Ziman- 
type interference function obtained by carrying out 
this step of the present EDXD data analysis are shown 
in Figs. 4 and 5 for SlOE glass. 

3.4. The I N T E R F  subroutine 

Usually several (live to ten) scattering experiments 
at different but fixed diffraction angles 20 are carried 
out for disordered systems by the EDXD method in 
order to cover as wide a range of s values as possible. 
The different segments of the interference function, 
each obtained from an EDXD data set collected at a 
different diffraction angle, are joined to each other, 
thus giving the total interference function, in the 
I N T E R F  subroutine. The construction process starts 
with the i(s) segment derived from the EDXD data 
used for the 1p(E) determination as well. The next i(s) 
segment, derived from the EDXD data obtained at 
the next lowest diffraction angle, is scaled to the first 
one and a new master i(s) segment, an average value 
of the first and scaled second segments, is obtained. 
The scaling constant is determined through a least-squares 
regression analysis of the values of both segments in the 
overlapping region of s values. The procedure is repeated, 
considering the next i(s) segments, until the total i(s) 
function, of either the Faber-Ziman or the Ashcrofl -Lan- 
greth type, is extended to the lowest s value covered by the 
EDXD experiments. The experimentally inaccessible part of 
i(s), below this value, is derived by linear extrapolation 
to s = 0. The quality of the i(s) function thus obtained 
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Fig. 2, Spectrum of the incident radiation beam of a W tube 
obtained from liquid mercury (* multiplied by 0.1), from SiO2 
glass corrected (- -} and not corrected { . . . .  } for coherent 
multiple scattering. 
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Fig. 3. Ratio of the intensities of double and single coherent 
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is estimated by computing the integral 
Sma~ 

f s2[i(s)  - -  1] ds,  (13) 
0 

where Sma x = (l.0135Em, x) sin 0 . . . .  which should equal 
- 2rt2po according to the so-called sum rule (Wagner, 1978). 

The reduced Faber-Ziman interference function, 
s[i(s)-1], for silica glass, obtained from the EDXD 
data shown in Fig. 4, is presented in Fig. 6 for the cases 
with and without the multiple scattering correction. 
Both interference functions agree well with each other 
in shape and numerical values, which indicates that 
the multiple-scattering correction appears to be insignificant 
in the radial-distribution-function analysis of SiO 2 glass by 
the EDXD method described here. The reason is that the 
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Fig. 4. E D X D  profiles from silica glass obtained at: (a) low 
diffraction angles: (h) high diffraction angles. 

multiple-scattering contribution to the EDXD data, when 
not explicitly accounted for, is absorbed by estimation 
of the incident-radiation-beam intensities 1p(E) (see Fig. 2) 
and is thus compensated for to a great extent. We consider 
this self-correction to be an advantage of the computa- 
tional procedures employed. It is "worth mentioning 
that the interference function for silica glass shown in 
Fig. 6 agrees well with those for similar samples 
obtained by the ADXD method (Mozzi & Warren, 
1969) and by the EDXD method (McKeown, 1987), 
which proves the reliability of the EDXD data processing 
performed here. 
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3.5. The DISTRF subroutine 

The reduced radial distribution function G(r), the 
pair distribution function ,q(r)= p(rl/po and the radial 
distribution function 4rcr2p(r) of the Faber-Ziman or 
Ashcrofl-Langreth type as desired are computed by 
the Fourier transformation of the interference function 
[see (2)] in the DISTRF subroutine. The data for all 
the distribution functions are stored in a data file for 
further analyses. The quality of the distribution functions 
calculated is tested by fitting a straight line to G(r) in the 
range r = 0-1 /k, to obtain the average atomic number 
density Po, on the basis of 

Gvz(r) = - 4~zrpo, (14) 

where Gvz(r) is a reduced radial distribution function 
of the Faber-Ziman type, and 

GAL(r)  = --4~Zrpo[~ c,J;(s = 0) ]2, /~ ". c,f i2(S = 0), (15} 

where GAL(r)is a reduced radial distribution function 
of the Ashcroft-Langreth type, which only holds for 
small values of r (Wagner, 1978). This is based on the 
physical reasoning that p(r) should be zero in the 
region where the atoms do not approach each other, 
owing to the repulsion of the interatomic pair potential. 

Gvz(r), for silica glass, evaluated from the inter- 
ference function corrected for coherent multiple scattering, 
is shown in Fig. 7. That calculated from the interference 
function not corrected for multiple scattering is, in practice, 
indistinguishable from it and that is why it is not shown. 
The Gvz(r) obtained has a resolution superior to that of the 
G(r) functions reported by Mozzi & Warren (1969) and 
McKeown (1987), since the interference function ivz(s) has 
been determined up to the higher-s region and the use of 
any artificial damping factor is not required for the 
Fourier transformation. 

Some factors that are unaccountable for, including 
the termination effect in the Fourier transformation, 
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Fig. 7. Reduced radial distribution function for silica glass, 
calculated from the corrected interference function of Fig. 6. 

may cause spurious oscillations in G(r), particularly in 
the region below the first peak, as one can see in Fig. 
7. A procedure for modifying such residual problems, 
in a way similar to that proposed by Kaplow, Strong 
& Averbach (1965), is available in the program PEDX. 

PEDX has also been successfully tested using the 
EDXD data of Fe,,oNi,,oP.,,B6 metallic glass and liquid 
mercury. A detailed description of the experimental set-up 
and procedures as well as a discussion of the results of 
radial-distribution-function analysis of the EDXD data 
obtained will be given elsewhere. 

4. Implementation of P E D X  

The program PEDX has been written in Microsoft 
Fortran77 and in its present version consists of 5000 
statements. The program has been designed for IBM 
XT/AT or compatible personal computers equipped 
with a CGA/EGA/VGA graphics card. PEDX runs 
under PC/MS-DOS 4.0 (or later versions) and occupies 
about 400 kbytes of core memory. Despite the complexity 
of its computing scheme, the program is a high-performance 
one, so a sequence of data analysis takes only minutes to 
complete on an IBM AT with 80287 coprocessor. During 
the data processing, all important intermediate results and 
the final results are displayed on screen by means of a 
built-in graphics routine assembled from standard graphics 
functions included in the Microsoft Fortran Graphics 
Library. User interventions are scarcely needed in the course 
of the program execution. Data input and program-control 
operations are carried out through the keyboard in an 
interactive mode. With this architecture, the program is easy 
to use and requires no special knowledge of computers on 
the part of the user. 

Copies of the PEDX program can by obtained from 
the authors. 

The authors are indebted to Dr K. Sugiyama of 
Tohoku University, Sendai, and Dr S. Takeda, ERATO, 
JRDC, for valuable discussions and help in the EDXD 
experiments. 
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A b s t r a c t  

An algori thm to calculate the numerical values of the 
C lebsch-Gordan  (C-G) coefficients is described. It uses a 
well elaborated recursive procedure yielding significantly 
high computa t ion  efficiency and accuracy. A 60-line For t ran  
program that implements the algori thm can be applied to 
the calculation of various symmetry-adapted  C - G  coeffi- 
cients. 

In troduct ion  

In the quan tum theory of angular  momentum (Messiah, 
1964), one often encounters the irreducible representation 
of the product  of two generalized spherical harmonics:  

11 + 1 2  

T,~,",(g)Tt~'-"'~(g) = ~ (l~12m~m2]lm)(l~lznan2]ln)T?"(g) 
I = I l l  - 12[ 

(m = m~ + m2; n = n I + n2), (1) 

where (l~12mlmzllm) are the C - G  coefficients defined by 

(l l l2mlm2llm) = {[(2l + l)/(I 1 + 12 + I + 1)!] 

x (I 2 + 1 - 11)!(I + 1~ - 12)!(I l + 12 -- 11! 

x (I l + ml)!(I 1 - ml)!(I 2 + m2)! 

x (I 2 - m2)!{I + m)!(I - m)!} 1.2 

* Permanent address: Department of Materials Science and 
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110006, People's Republic of China. 
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× ~ E( - l )~ /z ! ] [ ( l l  + I~ - l -  z)! 
.7" 

x (1 + z - I1 - m2)!(12 + m 2  - -  z ) !  

x (,7. + 1 -- 12 + m,)!(ll -- ml -- z ) ! ] - i .  (2) 

In the sum, z traverses positive integers greater than or equal 
to m 2 + I~ - I and 12 - I -  m 1 and smaller than or equal to 
I l + l  2 - I , l  2 + m  2 a n d l  1 - m l .  

Many  methods have been described of calculating the 
numerical values of the C - G  coefficients, using either the 
general expression (2) (Simon, Vander  Sluis & Biedenharn, 
1954; Academia Sinica, 1965; Caswell & Maximon,  1969) 
or a recurrence scheme (Raynal,  1987). The aim of our work 
is to develop a new recursive procedure that minimizes 
required memory and computa t ion  time. 

M a t h e m a t i c a l  a spec t s  

The properties of the C - G  coefficients have been extensively 
studied in the literature (Edmonds,  1960; Messiah, 1964). 
Only  those related to our method are summarized here. 

(1) Selection rules 

For the nonzero C - G  coefficients the following condit ions 
must be fulfilled: 

--11 < m I < / l 

--12 < m 2 _< 12 
(3)  

1Ix -- 121 < I < I l + 12 

- - I < m < l  

m = m 1 + tn 2. 
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