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We investigate the quality of structural models generated by the Reverse Monte Carlo (RMC)

method in a typical application to glass systems. To this end we calculate diffraction data from a

Li2O–SiO2 molecular dynamics (MD) simulation and use it, in addition to minimal pair distances

and coordination numbers of silicon (oxygen) to oxygen (silicon) ions, as input for RMC

modeling. Then we compare partial radial distribution functions, coordination numbers, bond

angles, and ring sizes predicted by the RMC models with those of the MD system. It is found

that partial distribution functions and properties on small lengths scales, as distributions of

coordination numbers and bond angles, are well reproduced by the RMC modeling. Properties in

the medium-range order regime are, however, not well captured, as is demonstrated by

comparison of ring size distributions. Due care therefore has to be exercised when extracting

structural features from RMC models in this medium-range order regime. In particular we show

that the occurrence of such features can be a mere consequence of the chosen starting

configuration.

1. Introduction

The Reverse Monte Carlo (RMC) method is commonly

used to build structure models based on experimental data.

Introduced by McGreevy and Pusztai in 1988,1 it has been

widely used and is now considered a standard method in

analyzing structural data. Advantages of this method are its

easy implementation and its wide applicability. It has been

used to model various material systems such as crystals,

polymers and glasses. In principle any structural data can be

used as input for the RMC method, but most modelings focus

on using diffraction data obtained from X-ray and/or neutron

scattering. In ion conducting glass systems RMCmodels of the

structure have been created for x Li2S + (1 � x) SiO2 glasses,
2

0.7SiO2 + 0.3Na2O glass,3 xNa2S + (1 � x)B2S3 glasses
4 and

0.5Li2S + 0.5[(1 � x) GeS2 + xGeO2] glasses
5 among others.

As pointed out by McGreevy, RMC models are ‘‘neither

unique nor ‘correct’ ’’, but can aid our understanding of local

structure properties and their relation to other physical

properties.6 It is important to study RMC models in different

material classes and to get insight into the limits of the

applicability of this method. One approach of testing the

RMC method is to use structural data derived from computer

simulations as input for the modeling and compare the resulting

RMC structures with the original one. In the past, such

investigations have been undertaken for liquid argon and

some molten salts,7 for colloidal aerogels8 and liquid chlorine.9

Similar tests become a more urgent question now in the case

of more complex systems such as the ion conducting network

glasses, where different types of atoms form a disordered

glassy host matrix for mobile cations. In the RMC studies of

these systems not only their short range order has been

investigated, but also the medium range order. Among those

studies are discussions of the rings sizes in vitreous SiO2 and

GeO2,
10 a detailed investigations of amorphous GeSe2,

11,12

and a proposal of a structural model for multi-component

borosilicate glasses, where partial segregation of silicon and

boron rich regions is predicted.13 It was also suggested to use

such models as basis for further investigation of possible

conduction pathways of the mobile ions. In this respect the

RMC models have been employed in connection with

geometric constraints and the bond valence (BV) analysis14,15

(see ref. 16 for a critical discussion of this procedure).

In this paper we test the RMC method against structural

data generated from a molecular dynamics (MD) simulation

of a Li2O–SiO2 glass. For this purpose we calculate diffraction

data from the simulated MD structures and use it as input for

the RMC modeling.17 For the evaluation of the resulting

RMC models we determine how well various properties of

the original MD structure are reproduced. Particularly

we compare properties such as partial radial distribution

functions and ring-size distributions, which are not easily

accessible by experiment. Through our evaluation it can be

clarified how far one can use the RMC method to gain insight

into these properties, and where one need to be cautious before

taking the features of the RMC model as real.

We want to stress that a testing based on the MD simulation

is valid irrespective of whether it is a good representation of
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the real lithium silicate glass. Over the last few decades it has

been established that simulated structures of such modified

network glasses show no peculiarities, which make them

basically different from the structures of real systems studied

in experiments. It can, however, be difficult to generate all

details of a structure in a simulation for a specific system. We

will show that the RMC models generally compare well with

the MD structure, but that one has to be careful when

analyzing features of the medium-range order regime.

2. Molecular dynamics simulations

We performMD simulations of a lithium silicate glass with the

chemical formula Li2O–SiO2 using the potential model of

Habasaki and Okada.18 The cubic simulation box has a length

L = 50.04 Å and contains 11664 atoms (3888 Li, 1944 Si,

5832 O) corresponding to a density of 2.27 g cm�3 and a

number density of r0 = 0.093 Å�3. Periodic boundary conditions

are used. The simulations are performed in the NVE ensemble

(micro canonical ensemble where the number N of particles,

the volume V of the simulation box, and the total energy E are

kept constant). The energy E was adjusted so that the

temperature of the system fluctuates around a mean value of

301 K with deviations of 2 K. The systems are equilibrated for

about 1 ns and the runs for obtaining data have a duration

of 2 ns, using a time step interval of Dt = 1 fs.

The effective interatomic interactions between two atoms of

type i and j at distance r are:

UijðrÞ ¼
e2

4pe0

zizj

r
þ F0ðBi þ BjÞ exp

Ai þ Aj � r

Bi þ Bj

� �
� CiCj

r6

ð1Þ

where the parameters listed in Table 1 have been optimized18

and shown to have good agreement with experimental

data.18–21 The interaction potential in eqn (1) is composed of

three terms. The first one in (1) is the Coulomb interaction

with effective charge numbers for the species. The second term

is a Born-Meyer type potential, which takes the short-range

repulsive interactions into account, and the third is a dispersive

van-der-Waals interaction. It is only used for interactions

involving oxygen.

The system was initially thermalized at a high temperature

2500 K, which is well above the (computer) glass transition

temperature of this system. From this liquid state the system is

cooled down in several steps with intermediate periods of

equilibration. First an NVT run (canonical ensemble, where

the number N of particles, the volume V and the temperature

T are fixed) of 10 ps at 2500 K is performed, followed by an

NVE run of the same duration. After simulating another 20 ps

in the NVT ensemble and 10 ps under NVE conditions the

temperature is decreased in four subsequent sequences down

to 300 K. Each cooling cycle consists of a 10 ps run using a

thermostat to decrease the temperature linearly, a 10 ps NVT

run at the target temperature, and a 10 ps NVE run to verify

that there are no temperature drifts. The configurations at the

end of the 300 K cooling cycle are used as starting points for a

800 ps long equilibration run using the NVE ensemble. The

measuring runs are 2 ns long. All MD simulations were carried

out with the LAMMPS software package.22

The partial and total radial distribution functions gij(r) and

G(r) as well as the total scattering structure factor S(Q) were

calculated according to the partial distribution function

formalism (see ref. 23 for a discussion of different possible

definitions of scattering functions). The partial radial distribution

functions are given as

gijðrÞ ¼
nijðrÞ

4rjpr2dr
; ð2Þ

where nij(r) is the average number of particles of type j between

distances r � dr/2 and r+ dr/2 from a particle of type i, and rj
is the mean number density of particles of type j.

The total radial distribution function G(r) is calculated by

GðrÞ ¼ 4prr0
Xm
i;j¼1
½wijgijðrÞ� � 1

" #
; ð3Þ

where r0 is the total number density of all atoms in the system,

m is the number of particle types, and wij are weighting factors:

wij ¼
Xm
k¼1

ck �bk

 !�2
cicj �bi �bj : ð4Þ

Here ci = ri/r0 are the molar fractions of particles of type i,

and �b i is their average bound coherent scattering length. In

order to calculate X-ray diffraction functions one has to

replace the �b i with the atomic form factors fi.

Finally, the total structure factor S(Q) is calculated from

G(r) by

Q½SðQÞ � 1� ¼
Z1
0

GðrÞ sinðQrÞdr: ð5Þ

All data from the MD system were averaged over 11

configurations from the 2 ns measurement run, which are

200 ps apart each. The scattering lengths and atomic form

factors used in eqn (4) were taken from ref. 24 and 25,

respectively, and are listed in Table 2. In the following we

take the freedom to speak about these generated diffraction

data simply as ‘‘diffraction data’’ and ask the reader to keep in

mind that the data were not measured but calculated from

eqn (2)–(5).

Table 1 Potential parameters for the MD simulations (cf. eqn (1))

Ion z A/Å B/Å C ½Å3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kJ=mol

p
�

Li+ 0.87 1.0155 0.07321 22.24
Si4+ 2.40 0.8688 0.03285 47.43
O2� �1.38 2.0474 0.17566 143.98
F0 = 4.186 kJÅ�1 mol�1 rc = 1.3 Å

Table 2 Average bound coherent scattering lengths and atomic form
factor for Li, Si, and O

Li Si O

�b �1.9 4.1491 5.803

f 3.005 14.41 8.144
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3. Reverse Monte Carlo modeling

RMC simulations were carried out using the RMC++

package.28 The simulations started with building an initial

atomic configuration which was then refined against the S(Q)

and G(r) data computed from the MD structure.

Two starting configurations were considered: a ‘‘random

distribution’’ of atoms29 (subsequently referenced by ‘‘R’’) and

another from the Li2O–SiO2 orthorhombic crystal structure

(space group Cmc21, subsequently referenced by ‘‘C’’). Both

configurations consist of 3000 atoms (1000 Li, 500 Si, 1500 O)

positioned inside a cubic box with a side length of 31.82 Å so

that the atomic number density is the same as in the MD

structure. From the random and crystalline-type starting

configurations, two initial models ‘‘IR’’ and ‘‘IC’’ were prepared,

respectively, by applying the following constraints:

(i) Si is coordinated fourfold with O using a minimal

neighbor distance of 1.4 Å and a maximum neighbor distance

of 1.8 Å. This corresponds to a 100% fraction fSi,O (4) = 1 of

fourfold coordinated Si.

(ii) The relative numbers of bridging (two Si neighbors) and

non-bridging oxygens (one Si neighbor) is 37 and 60%, respec-

tively. This corresponds to fO,Si(2) = 0.37 and fO,Si(1) = 0.60.

(iii) Minimal atomic distances rmin given in Table 3 are

required.

Intra-tetrahedral O–Si–O angles and inter-tetrahedral

Si–O–Si angles were allowed to evolve freely. The preparation

was run until the constraints (i)–(iii) were satisfied for at least

95% of the atoms (for given uncertainty parameters, see

below).

After creating the initial models, the final refinement is done

in order to obtain the best possible agreement between the

computed S(Q) and G(r) from the RMC model and the

calculated data from the MD-simulation. Both the real space

as well as the reciprocal space data were used, since strong

low-Q features in S(Q) emphasize the medium range order,

while G(r) shows well defined low-r features which emphasize

the short range atomic order. The same constraints as in the

preparation of the initial models were applied also during the

final RMC modeling.

In the modeling, the input quantities, i.e. the total radial

distribution function G(r), the total structure factor S(Q),

and the fractions fSi,O(4), fO,Si(2), and fO,Si(1) of differently

coordinated silicon and oxygen ions are taken into account by

an effective Hamiltonian of type

Heff ¼
X
a

w2a ¼
X
a

~w2a
s2a
; ð6Þ

where ~w2a is the square deviation between the computed and the

measured (in the case of constraints required) value of the

input quantity a. The weighting (or tolerance) factors sa
are summarized in Table 4. As in ordinary Monte-Carlo

simulations, stochastic moves of the particles are performed

(while taking into account the minimum distance restrictions),

which drive the ensemble of possible atomic configurations to

a stationary state with probabilities p exp(�Heff). For details

of the specific algorithm used in these simulations, we refer to

the manual of the RMCA and RMC++ package, see ref. 30.

In total five RMC models were made. Models ‘‘XR’’ and

‘‘XC’’ were based on the random and crystalline-type starting

configurations and refined against the X-ray data alone.

Models ‘‘NR’’ and ‘‘NC’’ were based on the random and

crystalline-type starting configurations and refined against the

neutron data alone. A fifth model was made using both

the X-ray and the neutron diffraction data and starting from

the random configuration (‘‘NXR’’).

In Fig. 1 and 2 the corresponding total structure factors

and total distribution functions are compared to the ones

calculated from the MD structure. As expected, a good

agreement is achieved through the RMC modeling.

4. Comparison of structural properties

4.1 Partial radial distribution functions

In Fig. 3 partial radial distribution functions gij(r) (see eqn (2))

are shown. Generally the partial gij(r) for S–Si, Si–O and Li–O

generated by RMC and MD simulations agree well. However,

in gOO the second peak is lacking or too weakly pronounced in

the RMC models. This difference can lead to significant

Table 3 Minimal atomic approach distances as used in the RMC
modeling

Pair Si–Si Si–O Si–Li O–O O–Li Li–Li

rmin/Å 2.8 1.4 2.5 2.3 1.7 2.2

Table 4 Weighting factors sa used for the input quantities in the
RMC modeling

Quantity S(Q) G(r) fSi,O(4) fO,Si(2) fO,Si(1)

s 10�6 10�6 10�4 10�3.5 10�3.5

Fig. 1 Comparison of G(r) of Li2O–SiO2 RMC models based on

crystalline-type (dashed line) and random (dotted line) starting

configurations with that of a Li2O–SiO2 MD system (solid line).

Neutron diffraction data are shown in panel (a) and X-ray diffraction

data in panel (b).
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deviations of the RMC generated models and the MD

structure in the medium-range order regime (see also the

discussion in section 4.4). While there is no dependence upon

the starting configuration (crystalline or random), some

differences can be seen between the RMC models based on

the neutron diffraction data and those based on the X-ray

diffraction data. These are most pronounced in gSiLi and gLiLi,

since there the higher sensitivity of the neutron probe to the

lithium ions becomes particularly relevant. Generally one

should expect that due to the different weighting factors of

the neutron and X-ray scattering probes, the combination of

both in the simulated data will give the best results. Indeed, we

find that the RMC models for which both the neutron and the

X-ray diffraction data were used, show the best agreement

with the MD data.

As a simple measure for comparison of all RMC models

with the MD model, we introduce the integral

da
ij ¼

Z
jgaijðrÞ � gMD

ij ðrÞjdr ð7Þ

over the difference between the partial radial distribution

functions of the RMC model a and the MD system. In the

numerical calculation we integrated up to r = 10, which

amounts to an integration to infinity, since gaij (r) D gMD
ij (r) D

1 for r\ 10. The results shown in Table 5 allow us to quantify

the quality of the RMC models a relative to each other by

means of the single number daij for each partial radial distribu-

tion function gij(r). Note that this number only gives a general

trend, but does not specifically account for deviations in

particular structural features, such as, for example, offsets in

certain peak and minima positions. It is surprising that on

average the IC and IR models that are not refined against

diffraction data, but just are made compliant with short-

range order constraints, are not much worse than the RMC

models (XC, XR, NC, NR) refined further against only

one diffraction set (X-ray or neutron). For example, the XC

model shows an average dij = 1.46 compared to an average

dij = 2.10 for the IC model, which amounts to an improve-

ment by 30%.

When the initial RMC models are refined against both the

X-ray and neutron diffraction data, the deviations become

larger and improvements by 45% are achieved in the average

dij values. We note that this improvement is due to the fact that

the NXR model provides quite good agreement for all

individual partial radial distribution functions. This does

not mean that it necessarily gives better agreement for an

individual partial distribution function than one of the other

4 models based on one scattering probe only. For the individual

partial distribution functions, the NXR model gives best

values only for the O–O and Li–O partial distribution function

in Table 5. However, when the refinement is guided by one

scattering probe only, large deviations occur for certain partial

radial distribution functions (see, for example, the dSi,Li for the

NC and NR models, or the dLi,Li values for the XC and XR

models).

Fig. 2 Comparison of S(Q) of Li2O–SiO2 RMC models based on

crystalline-type (dashed line) and random (dotted line) starting

configurations with that of a Li2O–SiO2 MD system (solid line).

Neutron diffraction data are shown in panel (a) and X-ray diffraction

data in panel (b).

Fig. 3 Comparison of gij(r) of Li2O–SiO2 RMC models based on

crystalline-type (dashed line) and random (dotted line) starting

configurations with that of a Li2O–SiO2 MD system (solid line). The

RMCmodel based on neutron diffraction data is shown with a vertical

offset of 2, while the RMC model based on both neutron and X-ray

diffraction data is shown with an offset of 4. In order to show the full

first peak, the curves are scaled by the given factor on the left side of

the vertical dashed line in each plot.
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4.2 Coordination numbers

The first neighbor shell coordination number distributions

fij(N) are defined here as the fractions of atoms of type i which

have N atoms of type j within a first neighbor shell radius rij.

These radii can be identified by the position of the first

minimum of the partial radial distribution functions gij(r)

shown in Fig. 3. Note that being neighbors in the sense of

this analysis is not associated with having a chemical bond. To

quantify the quality of the various RMC models a, the overlap

fa
ij ¼ 1�

X1
N¼0
j f aij ðNÞ � fMD

ij ðNÞj: ð8Þ

was calculated. A value fa
ij = 1 means perfect overlap between

the distributions of the coordination numbers f aij (N) and

nMD
ij (N) of the RMC model a and the MD structure.

The results are summarized in Table 6. No significant

differences in the fa
ij are found between the RMC models

based on the crystalline-type starting configuration and the

random starting configuration (with one exception for Si–Li,

where a larger difference is observed between the RMC-XC

and RMC-XR models). This suggests that the quality of

reproducing coordination numbers is independent of the

starting configuration. A significant difference between the

neutron based and the X-ray based RMC models is found in

the Li–O coordination numbers, where the better quality for

the neutron based model can be traced back to the higher

sensitivity of neutrons to Li. An improved overall agreement is

achieved when using both X-ray and neutron diffraction data,

though the two most significant discrepancies (Si–Si and O–O)

are still there. It is also informative to take a look at the

overlap numbers of the initial models that are based on the

constraints only. These are comparable in quality with

the RMC models, which in addition take into account the

information from one scattering probe. As for the partial

radial distribution functions discussed in the previous section

4.1, the RMC-NXR shows a clear improvement compared to

the initial RMC models IC and IR.

Fig. 4 shows a detailed comparison of the coordination

number distributions of the RMC-NC and RMC-XC models

with the MD model. For the distribution fSiO(N) not shown in

Fig. 4, we obtained a very good agreement which essentially

results from the constraint that silicon atoms must have 4-fold

coordination. The most striking discrepancies between the

RMC models and the MD structure are found in fOO(N)

and fSiSi(N). The MD model shows a clear bimodal

distribution with maxima at 3 and 6 neighbors (corresponding

to non-bridging oxygens and bridging oxygens) in nMD
OO (N),

while the RMC models have a broad smooth distribution. On

the other hand, nRMC
SiSi (N) is much narrower than nMD

SiSi (N).

These findings suggest that the short-range order of the

RMC models corresponds quite well to that of the MD

structure, but that the medium-range order, and particularly

the structure of the Si–O network, has significant differences.

We note, that there are virtually no differences between fSiSi(N)

and fOO(N) among the five RMC models.

In summary, we can conclude that most features in the

coordination number distribution are already captured by the

constraints. This may not be surprising, since coordination

numbers for Si and O have been used as input requirements

together with the rather high density of the system. As a

consequence, there is not much freedom for the coordination

numbers between other types of ion pairs.

4.3 Bond-angle distribution

We calculated bond-angle distributions for intra-tetrahedral

angles (O–Si–O) and inter-tetrahedral angles (Si–O–Si) and

found that all RMCmodels have essentially the same bond-angle

distributions. Differences lie within the statistical spread.

Table 5 Integrated differences dij
a of partial radial distribution

functions, cf. eqn (7)

Pair XC XR NC NR NXR IC IR C

Si–Si 1.10 1.24 1.42 1.50 1.21 1.56 1.56 9.76
Si–O 1.25 1.29 1.44 1.44 1.28 3.58 3.47 6.58
Si–Li 1.47 1.52 2.36 2.27 1.53 1.63 1.83 9.84
O–O 1.44 1.47 1.03 0.99 0.88 2.29 2.21 5.93
Li–Li 2.03 2.01 1.05 0.97 1.14 1.51 1.58 9.75
Li–O 1.46 1.42 1.24 1.12 0.91 2.01 2.04 6.71
Average 1.46 1.49 1.42 1.38 1.16 2.10 2.12 8.10

Table 6 Overlap of coordination numbers in percent (see eqn (8));
first neighbor shell radii are given in the second column

Pair rij/Å XC XR NC NR NXR IC IR C

Si–O 2.0 98.4 98.8 99.7 98.4 95.4 99.7 98.8 93.2
O–Si 2.0 99.5 99.6 99.5 99.6 99.1 99.6 99.6 91.2
Li–O 2.8 69.8 68.2 83.0 85.1 87.7 69.3 69.8 48.8
O–Li 2.8 84.5 82.5 84.9 84.9 86.6 83.1 84.5 57.6
Si–Li 3.8 90.4 80.9 77.8 78.5 83.8 80.6 74.5 47.7
Li–Si 3.8 89.5 87.9 87.1 86.7 89.2 84.7 81.7 49.0
Si–Si 3.5 64.0 65.1 64.5 61.9 62.3 66.0 64.1 63.9
O–O 2.9 52.9 52.0 54.2 54.3 58.9 51.6 51.1 89.9
Li–Li 3.5 82.4 81.5 79.5 81.2 92.8 84.4 84.9 52.6
Average — 81.3 79.6 81.1 81.2 84.0 79.9 78.8 66.0

Fig. 4 Comparison of histograms of coordination numbers of

Li2O–SiO2 for RMC models based on a crystalline-type starting

configuration using neutron diffraction data (black solid wide bars)

and X-ray diffraction data (striped bars), and the original MD

structure (narrow solid bars). The first atom type is the center atom,

and the given distances are the radii of the coordination sphere.
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In Fig. 5 the distributions for the RMC-NR and RMC-XC

model are compared to that of the MD structure. The Si–O–Si

bond-angle distribution of the RMC models agrees well with

the MD data. The intra-tetrahedral bond-angles, on the other

hand, are much broader distributed in the RMC models than

in the MD structure. This impression can be quantified by

calculating the mean angles �a(Si–O–Si) and �a(O–Si–O) as well

as the standard deviations Da(Si–O–Si) and Da(O–Si–O). It is

found that the mean angles of all RMC models agree very well

with the MD values, while the standard deviations are larger

by a factor of two, see Table 7. This finding corresponds to the

deviations observed in the partial radial distribution functions

in Fig. 3 and the coordination number distribution of O–O in

Fig. 4. There, distinctive features of the MD data, as the

second peak in gMD
OO and the bimodal distribution in f MD

OO , are

not well reproduced by the RMC models.

4.4 Ring-size distribution

In order to compare the topology of the glass-network we

determined ring-size distributions for each model. Here rings

and their size are defined in the following manner:

(i) A Si-atom and an O-atom are considered neighbors if

their distance is smaller than 2.0 Å (using minimum image

convention).

(ii) For each Si-atom g, the smallest closed loop of alternating

neighboring silicon and oxygen atoms is determined, which

entails the Si-atom g.

(iii) A smallest loop is counted as a ring if the sum of bond

vectors in the loop is zero.31

(iv) The size of the ring is equal to the number of its

Si-atoms.

The maximum number of rings equals the total number of

Si-atoms. However the number of rings is generally smaller,

since there are a number of Si-atoms for which no ring is found

(e.g., for an isolated SiO4 tetrahedra), and two different

Si-atoms can be associated with the same ring.

In Fig. 6 we plot the number of rings per volume as a

function of the ring size for the MD system, the RMC-NC and

the RMC-NR-model. No data is shown for the X-ray and

combined data based RMC models, since their ring-size

distributions are practically the same as for the neutron

diffraction data based RMC models. Indeed the ring-size

distributions almost do not change compared to those of the

initial models. On the other hand, there is a clear dependence

upon the starting configurations. While most rings (40%) of

the RMC-NR model are of size three and four, the RMC-NC

model has a high number of rings of size 4 and 6. The latter is

more in line with what is found in the MD system.

When removing rings due to requirement (iii) we noticed

that the RMC-NC and the RMC-XC models have a very high

number of rejected smallest loops, where the components of

the bond vector sum are integer multiples of the box length

L. Examining these loops in more detail reveals that they are

often straight linear chains penetrating the system parallel to a

coordinate axis (see also Fig. 7). Such straight chains are not

found in the RMC-NR and the RMC-XR models and in the

MD structure. In these models there occur also rejected loops,

but their number is much smaller and they are more twisted

than in the RMC models based on the crystalline starting

configurations.

5. Summary and conclusions

The RMC method successfully reproduces many salient

features of the local structure of the original MD system.

Some differences are found in the partial radial distribution

function of O–O, and in the coordination number distributions

of Si–Si and O–O. With respect to the structure beyond

nearest neighbor distances the RMC models are less sensitive

and therefore cannot be expected to capture the medium range

order in all details.

Comparing RMC models based on X-ray and neutron

scattering data revealed no significant differences. Moreover,

we found that the additional consideration of scattering data

from one type of probe (either X-ray or neutron) gives only a

modest improvement over the initial RMC models that are

based on geometric constraints only (number density, minimal

pair distances, some coordination numbers). When including

Fig. 5 Bond-angle distributions of the MD structure (solid lines) and

RMC models based on a crystalline-type starting configuration using

neutron diffraction data (dotted lines) as well as based on a random

starting configuration using X-ray diffraction data (dashed lines). In

the left panel the distributions of intra-tetrahedral angles (O–Si–O),

and in the right panel the distributions of inter-tetrahedral angles

(Si–O–Si) are shown.

Table 7 Mean values and standard deviations of bond angles

MD XC XR NC NR NXR IC IR C

�a(Si–O–Si) 141.2 139.8 140.7 137.4 138.6 140.5 138.0 138.5 125.7
Da(Si–O–Si) 13.7 13.1 13.6 14.5 14.5 13.1 14.9 15.5 0.5
�a(O–Si–O) 108.8 108.7 108.7 108.7 108.8 109.0 108.2 108.2 108.9
Da(O–Si–O) 5.9 13.1 12.9 12.7 12.4 11.3 15.6 15.9 3.2
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both scattering probes, however, the input information for the

RMC modeling becomes larger due to the different weighting

factors in eqn (4) for the two scattering probes. As a consequence

a significant improvement of the initial RMC models is

achieved.

Most structural properties of the RMC models do not

depend much on the type of starting configuration (crystalline

or random). Even the ring-size distributions do not differ that

much. However, taking a closer look at the rings, revealed that

the RMC models based on the crystalline starting configuration

exhibit straight linear chains penetrating the system. These

straight chains are remnants of the crystalline starting

configuration and their occurrence is not reflected in the

other structural properties studied. In particular, there are

no differences in G(r) and S(Q) between the RMC models

based on the crystalline and the random starting configuration.

These findings show that one should check carefully if a

medium-range order feature of interest in RMC models is

only a product of a particular starting configuration or if it can

be reproduced using totally different starting configurations.

Generally the RMC should become independent of the starting

configuration when using larger weighting factors for transient

time intervals (corresponding to a type of ‘‘simulated annealing’’)

or when using very long simulation times. However, in order

to check what is ‘‘long enough’’ requires care. Further

methodological work is necessary to endow RMC simulations

with capabilities of capturing better the medium-range order

features in heavily disordered materials since those features, as

a rule, are not very well expressed in the diffraction data which

typically guide the simulations themselves.
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Grant number 0710564).

Appendix: RMC algorithm

Three types of experimental data were considered to contribute

to the effective Hamiltonian Heff =
P

a w2a, w
2
a = ~w2a/s

2
a, in

eqn (6):

The w2S for the structure factor S(Q) reads

w2S ¼
X
i

½ScðQiÞ � SeðQiÞ�2

s2S
; ð9Þ

where Se is the experimental structure factor, Sc is the

structure factor calculated in the RMC configurations, Qi

are the wave vectors for which Se was measured, and sS is

the chosen tolerance (sS was chosen independent of Q with the

value given in Table 4).

The w2g for the radial distribution function Gc(r) reads:

w2g ¼
X
i

½GcðriÞ � GeðriÞ�2

s2g
; ð10Þ

where Ge and Gc are, respectively, the experimental and the

calculated radial distribution functions, ri are the distances for

which ge was determined from Se, and sg is the tolerance

(sg was chosen to independent of r with the value given in

Table 4).

The w2a,b;k for the coordination number constraints, i.e. for

the fractions of four-fold coordinated Si (a = Si, b = O,

k = 4), bridging O (a = O, b = Si , k = 2), and non-bridging

O (a = O, b = Si, k = 1), read

w2a;b;k ¼
½f ca;bðkÞ � fa;bðkÞ�2

s2a;b;k

: ð11Þ

Here fab(k) are the required fractions (fSiO(4) = 1, fOSi(2) =

0.37, fOSi(1) = 0.63) and f ca,b(k) are the calculated fractions in

the RMC configurations. The chosen weighting factors sa,b;k
are given in Table 4.

Fig. 6 Comparison of ring size distributions of Li2O–SiO2 RMC

models based on a crystalline type starting configuration using neutron

diffraction data (black wide bars) and based on a random starting

configuration (striped bars) with that of a Li2O–SiO2 MD system

(narrow bars).

Fig. 7 Picture of the RMC model based on a crystalline-type starting

configuration. Lithium atoms are marked as small yellow spheres,

silicon atoms as medium sized green spheres, and oxygen atoms as

large red spheres. In the center a linear chain of neighboring Si and O

is marked in dark blue, which is a leftover of the starting

configuration.

10450 | Phys. Chem. Chem. Phys., 2010, 12, 10444–10451 This journal is �c the Owner Societies 2010



References

1 R. L. McGreevy and L. Pusztai, Mol. Simul., 1988, 1, 359.
2 H. Uhlig, M. J. Hoffmann, H. P. Lamparter, F. Aldinger,
R. Bellissent and S. Steeb, J. Am. Ceram. Soc., 1996, 79,
2839.

3 M. Fabian, P. Jovari, E. Svab, G. Meszaros, T. Proffen and
E. Veress, J. Phys.: Condens. Matter, 2007, 19, 335209.

4 W. Yao, S. W. Martin and V. Petkov, J. Non-Cryst. Solids, 2005,
351, 1995.

5 D. L. Messurier, V. Petkov, S. W. Martin, Y. Kim and Y. Ren,
J. Non-Cryst. Solids, 2009, 355, 430.

6 R. L. McGreevy, J. Phys.: Condens. Matter, 2001, 13, R877.
7 L. Pusztai and G. Toth, J. Chem. Phys., 1991, 94, 3042.
8 L. Pusztai, H. Dominguez and O. A. Pizio, J. Colloid Interface Sci.,
2004, 277, 327.

9 A. de Santis and D. Rocca, Mol. Simul., 1996, 17, 143.
10 S. Kohara and K. Suzuya, J. Phys.: Condens. Matter, 2005, 17,

S77.
11 Y. Murakami, T. Usuki, S. Kohara, Y. Amo and Y. Kameda,

J. Non-Cryst. Solids, 2007, 353, 2035.
12 V. Petkov and D. Le Messurier, J. Phys.: Condens. Matter, 2010,

22, 115402.
13 M. Fabian, E. Svab, T. Proffen and E. Veress, J. Non-Cryst. Solids,

2008, 354, 3299.
14 S. Adams and J. Swenson, Phys. Rev. Lett., 2000, 84, 4144.
15 J. Swenson and S. Adams, Phys. Rev. Lett., 2003, 90, 155507.
16 C. Müller, E. Zienicke, S. Adams, J. Habasaki and P. Maass, Phys.

Rev. B: Condens. Matter Mater. Phys., 2007, 75, 014203.
17 The RMC modeling is done with weighting factors (see below)

that are commonly used in connection with measurements. We
deliberately divided the work between our two groups: the RMC
modeling based on the total structure factors obtained from the
MD simulations was performed at Central Michigan University
with a typical procedure used for the analysis of experiments and

without knowledge of the atomic configurations generated
by the MD, which was conducted at TU Ilmenau/University of
Osnabrück. In this way we evaluated the RMC modeling as it is
commonly used in practice.

18 J. Habasaki and I. Okada, Mol. Simul., 1992, 9, 319.
19 J. Habasaki, I. Okada and Y. Hiwatari, J. Non-Cryst. Solids, 1995,

183, 12.
20 R. Banhatti and A. Heuer, Phys. Chem. Chem. Phys., 2001, 3,

5104.
21 A. Heuer, M. Kunow, M. Vogel and R. Banhatti, Phys. Chem.

Chem. Phys., 2002, 4, 3185.
22 S. J. Plimpton, J. Comput. Phys., 1995, 117, 1, http://lammps.

sandia.gov/.
23 D. A. Keen, J. Appl. Crystallogr., 2001, 34, 172.

24 V. F. Sears, Neutron News, 1992, 3, 26, http://www.ncnr.nist.gov/
resources/n-lengths/.

25 C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore,
S. A. Kotochigova and D. Zucker, 2005, http://physics.nist.gov/
ffast [2009, June 2], originally published in ref. 25 and 26.

26 C. Chantler, J. Phys. Chem. Ref. Data, 1995, 24, 71.

27 C. Chantler, J. Phys. Chem. Ref. Data, 2000, 29, 597.

28 G. Evrard and L. Pusztai, J. Phys.: Condens. Matter, 2005, 17, S1.
29 This starting configuration does not correspond to a fully random

arrangements of the ions, but to a quasi-random sequential setup,
where one after each other the silicon ions, the oxygen ions and the
lithium ions are placed into the simulation box under consideration
of the minimum distance and coordination number constraints.
Details of this setup procedure are described in section 9.8.2. of the
manual of the RMCA program, see ref. 29.

30 RMC++ manual, http://www.szfki.hu/~nphys/rmc++/docs.html
(June 2009).

31 Without this requirement, chain-like structures penetrating the
system can be misinterpreted as rings due to the periodic boundary
conditions.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 10444–10451 | 10451


