[CCP14 Home: (Frames No Frames)] CCP14 Mirrors: [UK] [CA] [US] [AU]	<u>What's New</u>	Introduction	<u>Site Map</u>
Search the CCP14	Download Programs	<u>Tutorials</u>	Solutions
	What do you want to do? (lists of software by crystallographic method)		

(This Webpage Page in No Frames Mode)

CCP14

Tutorials and Examples

Powder Cell for Windows, Structure Visualisation/Manipulation, Powder Pattern Calculation and Profile Fitting by Werner Kraus and Gert Nolze

Performing Le Bail structureless whole pattern fitting using Powder Cell

The CCP14 Homepage is at http://www.ccp14.ac.uk

[Tutorials page] | [PowderCell Tutorial Index] | [Le Bail Method Homepage]

The following run-through is for Powder Cell 2.3 You may find for more complicated data involving nasty backgrounds and peak anisotropy, other programs such as LHPM-Rietica, Fullprof, GSAS, etc should be used to handle this. Powder Cell provides a very easy interface to perform simple Le Bail fitting.

We will be using Cubic Y2O3 as the example to be profiled using the following starting information

Spacegroup = I A 3 - (206) CELL is 10.5981 10.5981 10.5981 90 90 90

For strutureless Le Bail fitting, Powder Cell 2.3 may complain there are no atoms but just ignore this (or you can give it a "dummy" atom to stop it complaining). You can also load any struture and just change the cell and spacegroup. For Le Bail, Powder Cell will ignore the atomic information.

Open up your powder diffraction data using **Diffraction**, Load Powder Pattern.

Ele I	rderCell 2		Option Sec.	ns Qi	ihacti	an 且	efner - 22	nent 040	Win	dow	* 5	Pagia		ine Bi				•)	2	10	- un		1																-	. 8
171976	eder pet Rp= 0.0 -Y2o3.de -DIFF	term DD	Bwp	- 0.00		Resp-	0.00							-		-		-					-		-		2 the	ta = l	16.58	5	d	• 1.9	849	le	- 1	7058	7.1	×		
85988															· · · · · ·																							-		
0	5 2		25					40			یت 	50				λ.λ 60					 D	ä.s.		ند 	80		- A			<u>لمح</u>		95		100		105		110		
M Sta	n <u>a</u> a	CP	Exp Exp	4.] <u>6</u>	9 Eu	±.]]	e]go	el.		Apa		b w	s		921.		躍	COP		i and the second	Hac.		es, P	aint		嚷 c	CP.		Mic	a	12	Pov	N	C P	'rog.			E •	3	23.1

In this case, we will enter a new structure from scratch by selecting **File**, **New**.

Enter the Spacegroup and Cell and Press OK. Powder Cell will complain there are no atoms but just ignore this.

```
Spacegroup = I A 3 - (206)
CELL is 10.5981 10.5981 10.5981 90 90 90
```


To start the Le Bailing Fitting, enter Special, Decomposition and Refinement
Ele Structure Select Options Diffraction Refinement Windows Special Help All subgroups in file sgr Strg+S All cell choices in file Strg+F NONAME Decomposition + refinement Other extinction laws Read hkl file
Special fit - decomposition and refinement parameter result NONAME
hkl File NONAME.hkl decomp. cycles yo/yc 6 refinement cycles 20
x* FW/HM for yo/yc 0.5 set I=F for IPAP

Now select **GO** and the Le Bail fitting should start and converge. If it does not, enter **Refinement, Parameters** and deselect some relevant parameters which may be dependent on the type of pattern you are trying to fit.

Done. With the Green different plot below the powder pattern. Display options can be enabled and disabled by selecting the right mouse button and the required option. An HKL file will be present in the same directory as the powder data and there is also the option of reading in Shelx files to optimise them to the powder data.

[Tutorials page] | [PowderCell Tutorial Index] | [Le Bail Method Homepage]

[CCP14 Home: (Frames No Frames)] CCP14 Mirrors: [UK] [CA] [US] [AU]	<u>What's New</u>	Introduction	Site Map
Search the CCP14	Download Programs	<u>Tutorials</u>	Solutions
	What do you want to do? (lists of software by crystallographic method)		

(This Webpage Page in No Frames Mode)

If you have any queries or comments, please feel free to contact the CCP14