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Introduction

I.S.A.A.C.S.InteractiveStructureAnalysis ofAmorphous andCrystallineSystems is a cross-
platform program developed to analyze the structural characteristics of three-dimensional
models built by computer simulations. The models may have any degree of periodicity (i.e.
crystallinity) and local symmetry. The following structural information is computed from the
models: total and partial radial distribution and structure factors for X-ray or neutron scatter-
ing, coordination numbers, bond angle and near atomic neighbor distributions, bond valence
sums, ring statistics and spherical harmonics invariants.The information may be visualized
conveniently and stored for further use.

An article describing the I.S.A.A.C.S. program and its features has been published in the
Journal of Applied Crystallography.
Users who consider to use I.S.A.A.C.S. for research purposesshould refer to this publication:

S. Le Roux and V. Petkov.J. Appl. Cryst., 43:181-185 (2010).
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Programming framework

I.S.A.A.C.S. is developed in C, FORTRAN90 andGTK+ [1] for the GraphicalUserInterface.
The C part of the code is used as a binding to wrap the GTK+ GUI over the FORTRAN90 core
routines used for the calculations. Separating the I.S.A.A.C.S. GUI from the FORTRAN90 rou-
tines makes the latter very easy to re-implement in other programs. Basically the FORTRAN90
routines are controlled by the GUI with minor exceptions where GTK+ functions are called
from FORTRAN90 routines to update a bar indicating the progress of calculations.

2.1 Supported platforms

The GTK+ library is a highly portable environment which allows I.S.A.A.C.S. to be a cross-
platform software. Microsoft Windows (32 bits), Linux (32 and 64 bits), as well as Mac OS X
(Intel-based Macintoshes) versions of the program are available.

2.2 The I.S.A.A.C.S. Project File format

I.S.A.A.C.S. program uses an intuitive format for a project file (see Tab.2.1) which contains all
parameters needed to set up a calculation of structural characteristics of a 3D model. The struc-
ture of the file follows theXML coding [2] and allows to store detailed information about the
system to be analyzed: chemical composition, chemical and physical properties of each atomic
species (e.g. atomic weight and x-ray/neutron scattering amplitudes), size of the model box,
atomic coordinates type (e.g. Cartesian or fractional), time series properties, description of the
bonding between atoms. The information is provided by the user and may be re-used/modified
during I.S.A.A.C.S. execution. The ’*.ipf’ file illustratedin table [Tab.2.1] shows the parame-
ters needed to run calculations for a 3D structure model of silica glass.

3
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Chapter 2. Programming framework 4

<?xml ve rs i on=" 1 .0 " encod ing ="UTF−8" ?>
< !−− I . S . A . A . C . S . v1 . 1 XML f i l e−−>
< i s a a c s−xml>

< !−− Format and f i l e o f t h e c o n f i g u r a t i o n ( s )−−>
< d a t a >

< type >Chem3D f i l e < / t ype >
< f i l e > / home / l e r o u x / Desktop / s i o 2 . chem3d< / f i l e >

< / d a t a >
< !−− Chemis t r y i n f o r m a t i o n−−>
< c h e m i s t r y >

<atoms>3000< / atoms>
< s p e c i e s number=" 2 ">

< l a b e l i d =" 0 ">O < / l a b e l >
< l a b e l i d =" 1 ">S i < / l a b e l >

< / s p e c i e s >
< e lemen t symbol="O">

<name>Oxygen < / name>
<z>8< / z>
<mass>16.000000 < / mass>
< rad >0< / rad >
< r a d i u s >0.660000 < / r a d i u s >
< n s c a t t >5.803000 < / n s c a t t >
< x s c a t t >8.000000 < / x s c a t t >

< / e lemen t >
< e lemen t symbol=" S i ">

<name> S i l i c o n < / name>
<z>14< / z>
<mass>28.090000 < / mass>
< rad >0< / rad >
< r a d i u s >1.110000 < / r a d i u s >
< n s c a t t >4.153000 < / n s c a t t >
< x s c a t t >14.000000 < / x s c a t t >

< / e lemen t >
< / c h e m i s t r y >
< !−− Box i n f o r m a t i o n −−>
<box>

<edges >
<a>35.662100 < / a>
<b>35.662100 < / b>
<c>35.662100 < / c>

< / edges >
< a n g l e s >

< a l pha >90.000000 < / a l pha >
< b e t a >90.000000 < / b e t a >
<gamma>90.000000 < / gamma>

< / a n g l e s >
< v e c t o r s >

<a . x>35.662100 < / a . x>
<a . y>0.000000 < / a . y>
<a . z>0.000000 < / a . z>
<b . x>0.000000 < / b . x>
<b . y>35.662100 < / b . y>
<b . z>0.000000 < / b . z>
<c . x>0.000000 < / c . x>
<c . y>0.000000 < / c . y>
<c . z>35.662100 < / c . z>

< / v e c t o r s >
< / box>
< !−− PBC i n f o r m a t i o n −−>
<pbc>

< app ly >TRUE< / app ly >
< f r a c t i o n a l >FALSE< / f r a c t i o n a l >
< f r a c t y p e >0< / f r a c t y p e >

< / pbc>
< !−− Bonds i n f o r m a t i o n−−>
< c u t o f f s >

< t o t a l >2.184304 < / t o t a l >
< p a r t i a l s >

<O−O>2.808390 < /O−O>
<O−Si >2.184304 < /O−Si >
<Si−O>2.184304 < / Si−O>
<Si−Si >3.432477 < / Si−Si >

< / p a r t i a l s >
< / c u t o f f s >
< !−− Time s e r i e s−−>
<t ime−s e r i e s >

< d t >2.500000 < / d t >
< u n i t > t [ f s ] < / u n i t >
< nd t >20< / nd t >

< / t ime−s e r i e s >
< !−− Apply p r o j e c t −−>
< p r o j e c t >TRUE< / p r o j e c t >

< / i s a a c s−xml>

Table 2.1 Example of I.S.A.A.C.S. project file ’*.ipf ’ in XML format forglassy silica.

4



Features

The main interface of the I.S.A.A.C.S. program [Fig.3.1-a] gives access to different menus:

• The ’Project menu’ [Fig.3.1-b] is used to read and writeipf files [Tab.2.1] as well as to
import/export coordinates of atoms from the analyzed structure models [Sec.3.1].

• The ’Edit menu’ [Fig.3.1-c] is used to define the properties of the structural characteris-
tics of a system to be studied.

• The ’Compute menu’ [Fig.3.1-d] is used to run the calculations [Sec.3.2].

• The ’Help menu’ [Fig.3.1-e] is used to access the documentation provided to help the
users.

3.1 Data Inputs and Outputs

The current version of I.S.A.A.C.S. can import 3D structure models in five different formats
[Tab. 3.1]:

1. XYZ [3]

2. Chem3D [4]

3. PDB (Protein Data Bank)

4. CPMD trajectory [5] ∗

5. VASP trajectory [6] ∗∗

Table 3.1 Model structure files read by I.S.A.A.C.S..

∗ atomic units are assumed in the case of CPMD trajectories.
∗ and∗∗ require to enter extra parameters through interactive dialog boxes:

5



Features 6

Figure 3.1 Main interface of the I.S.A.A.C.S. program

• Total number of atoms

• Number of chemical species

• Label and number of each atomic species

the input order, label and number of each atomic species willbe the one assumed when reading
the coordinates from the trajectory file.

The coordinates of atoms from a 3D model can be in any of the widely used formats listed in
table [Tab.3.2]:

I.S.A.A.C.S. can output an already imported 3D model in XYZ format [3] in either of the atomic
coordinates formats presented in table [Tab.3.2].

6



7 3.2. What can be computed by I.S.A.A.C.S. ?

1. Cartesians

2. Atomic units (in input for CPMD trajectory files only)

3. Fractional with the center of the model box at (0,0,0)

4. Fractional with one of the corners of the model box at (0,0,0)

Table 3.2 Formats of atomic coordinates imported and exported by I.S.A.A.C.S..

3.2 What can be computed by I.S.A.A.C.S. ?

I.S.A.A.C.S. can compute the following important structural characteristics of a 3D structure
model:

• Radial distribution functions g(r) (RDFs) [7] including ◦:

– Total RDFs for neutrons and X-rays.

– Partial RDFs.

– Bhatia-Thornton RDFs [8]

◦ Radial distribution functions can be computed by i) direct real space calculation and/or
ii) Fourier transforming of the structure factor calculated using the Debye formalism [9]

• Structure factors S(q) [9] including ◦◦:

– Total structure factors S(q) for neutrons and X-rays.

– Total Q(q) [9, 10] for neutrons and X-rays.

– Partial S(q):

∗ Faber-Ziman [11] partial S(q)

∗ Ashcroft-Langreth [12–14] partial S(q)

∗ Bhatia-Thornton [15] partial S(q)

◦◦ Structure factors can be computed by i) Fourier transforming of the radial distribution
functions and/or ii) using the Debye formalism [9]

• Interatomic bond properties

– Coordination numbers

– Atomic near neighbor distribution

– Fraction of links between tetrahedra

– Fraction of tetrahedral units

– Bond lengths distribution for the first coordination sphere

7



Features 8

• Distribution of Bond angles

• Distribution of Dihedral angles

• Ring statistics
According several definitions:

– All closed paths (no rules)

– King’s rings [16, 17]

– Guttman’s rings [18]

– Primitive rings [19, 20] (or Irreducible [21])

– Strong rings [19, 20]

Also included are options for:

– Possibility to look only for ABAB rings

– Possibility to exclude rings with homopolar bonds (A-A or B-B)from the analysis

Ring statistics is presented according to the R.I.N.G.S. method [22].

• Spherical harmonics invariant,Ql , as local atomic ordering symmetry identifiers [23]

– Average Ql for each chemical species

– Average Ql for a user specified structural unit

• Bond valence sums [24–26]

– Average bond valence for each chemical species

– Average bond valence for a user specified structural unit

• Mean Square Displacement of atoms (MSD)

– Atomic species MSD

– Directional MSD (x, y, z, xy, xz, yz)

– Drift of the center of mass

8



Running I.S.A.A.C.S.

A set of structural characteristics for a 3D model of silica glass computed by I.S.A.A.C.S.
is shown below as an example of the program utilization and output. The model has been
constructed by reverse Monte Carlo simulations guided by high-energy x-ray diffraction data for
silica glass [27]. It consists of 2000 oxygen and 1000 silicon atoms inside a box of dimensions
35.6621 Å. The model is available in the example files distributed with the program, details are
provided on the web site at:
http://isaacs.sourceforge.net/ex.html
http://www.phy.cmich.edu/people/petkov/isaacs/ex.html

4.1 Set up a calculation

When starting I.S.A.A.C.S. the ’Compute menu’ [Fig.3.1-d] is not activated. It is indeed
mandatory to import a structure model before being able to run any calculation on it.
Thus the user has the choice:

• To open an existing project, i.e. an ’*.ipf’ I.S.A.A.C.S. project file using The ’Project
menu’ =>Open [Fig.3.1-b] button.

• To create a new project using the ’Project menu’ =>New [Fig. 3.1-b] button.

4.1.1 The ’Project settings’ windows

TheOpen [Fig.3.1-b] and theNew [Fig. 3.1-b] buttons will open the ’Project settings’ window
[Fig. 4.1] which allows to import and set up a structure model for the calculation. The different
tabs of the ’Project settings’ window are also accessible through the ’Edit menu’ [Fig.3.1-c].

In the ’Data format settings’ tab [Fig.4.1] the user can select the format of the file with the
atomic coordinates [Fig.4.2] and then can open that file.

9
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Running I.S.A.A.C.S. 10

Figure 4.1 The ’Project settings’ window of the I.S.A.A.C.S. program

Figure 4.2 Selection of the file format of atomic coordinates in the I.S.A.A.C.S. program

10



11 4.1. Set up a calculation

If the structure model file is read successfully then the usercan adjust the different param-
eters required to run calculation using the different tabs of the ’Project settings’ windows [Fig.
4.1].

The ’Chemistry settings’ tab of the ’Project settings’ window [Fig. 4.3] allows to access
the information regarding the chemistry of the structure model and to check and/or modify the
properties of each chemical species.

Figure 4.3 The ’Chemistry settings’ tab of the ’Project settings’ windowin the I.S.A.A.C.S.
program

The user has the freedom to input his own data, however it is also possible to use the database
provided by the I.S.A.A.C.S. program using for example one ofthe different atomic radii (see
appendix [A.A] for details).

The ’Box settings’ tab of the ’Project settings’ window [Fig.4.4] allows to access the in-
formation regarding the periodicity of the system: description of the simulation box, the type
(i.e. Cartesian or fractional) of the coordinates and the periodic boundary conditions.
The simulation box is described using the ’A, B, C,α, β, γ’ set of parameters [Fig.4.4], or,

alliteratively, by the coordinates of the edges of the simulation box using the ’Lattice vector
properties’ window [Fig.4.5] accessible from the ’Box settings’ tab of the ’Project settings’

11
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Figure 4.4 The ’Box settings’ tab of the ’Project settings’ window in theI.S.A.A.C.S. program

windows through the ’Details of the box edges’ button [Fig.4.4].

Figure 4.5 The ’Lattice vector properties’ window in the I.S.A.A.C.S. program

12



13 4.1. Set up a calculation

4.1.2 Help to set up a project

A basic help [Fig.4.6] describing the information of each tab of the ’Project settings’ window
can be opened using the ’Help’ button of the ’Project settings’ window [Fig. 4.1, 4.3, 4.4].

Figure 4.6 The ’Help’ menu of the ’Project settings’ window in the I.S.A.A.C.S. program

This help window [Fig. 4.6] is also accessible from ’Help’ menu of the main I.S.A.A.C.S.
window [Fig. 3.1-e].

13



Running I.S.A.A.C.S. 14

4.2 Running a calculation

The first step to run a calculation is to validate the project by clicking on the ’Apply’ button of
the ’Project settings’ window [Fig.4.1, 4.3, 4.4]. First the program verifies that calculations
can be done using the information provided by the user in the fields of the different tabs of the
’Project settings’ window.
If the project is validated then calculation buttons in the ’Compute menu’ [Fig.4.7] of main
window of the program become active and some basic information on the system is displayed
in the main I.S.A.A.C.S. window [Fig.4.8]:

• Name of the file with the atomic coordinates

• Format of that file

• Basic chemistry information

– Total number of atoms

– Number of chemical species

– Volume and density of the model system

– Free volume

– Empirical chemical formula

– Concentration, fraction and number density of each chemicalspecies

Please notice that all calculations are not immediately accessible after validating the project.
Indeed some of these calculations require options to be applied and/or others calculation to be
run prior:

• The ’g(r)’, and ’S(q)’ calculations require to enter parameters to describe the size of the
simulation box.

• The ’S(q) from FFT[g(r)]’ calculation requires the ’g(r)’ calculation to be completed.

• The ’g(r) from FFT[S(q) Debye]’ calculation requires the ’S(q) from Debye Eq.’ calcula-
tion to be completed.

• The ’Spherical harmonics’ and ’Bond valence’ calculations require the ’Bond properties’
calculation to be completed.

• The ’Mean Square Displacement’ calculation requires to have multiple atomic configura-
tions to be present in the atomic configuration data file.

14



15 4.2. Running a calculation

Figure 4.7 The ’Compute’ menu with some calculations activated in the I.S.A.A.C.S. program

Figure 4.8 The main interface of the I.S.A.A.C.S. program after the validation of the project

15



Running I.S.A.A.C.S. 16

To compute each of the characteristics shown below the relevant dialog/menu boxes have been
used to set up the values of the program parameters required to run a structure analysis. For
example, figure [Fig.4.9] presents the dialog boxes used to control the calculationsof the radial
distribution function [Fig.4.9-a] and the ring statistics [Fig.4.9-b] for silica glass.
For example once the 3D structure is read and validated by I.S.A.A.C.S. the only parameter
required to compute the RDF is the number of steps in real space, δr [Fig. 4.9-a] (after the
calculation an optional smooth of the results is also possible). In the second case [Fig.4.9-b] a
few more control parameters (definition of a ring, chemical species used to initiate the search,
maximum size of a ring, maximum number of rings per node and description of the chemical
bonds) are needed.

To guide the calculation sequence I.S.A.A.C.S. requires users to supply control parameters.
Information about these parameters can be obtained througha help button in the dialog box
[Fig. 4.9-a,b] or through the help menu of the main window of the program [Fig. 3.1-e] that
will open the help window of the program [Fig.4.10].

The next pages illustrate the different dialog boxes used tocontrol the calculations as well
as the help associated to these boxes and displayed in the ’Help’ window of the I.S.A.A.C.S.
program.

Important: The web sites dedicated to the I.S.A.A.C.S. program provide adetailed theo-
retical background of the structural analysis proposed in the software:
http://isaacs.sourceforge.net/
http://www.phy.cmich.edu/people/petkov/isaacs/

16
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17 4.2. Running a calculation

Figure 4.9 Dialog boxes controlling a) the calculation of radial distribution functions and b)
ring statistics in the I.S.A.A.C.S. program.
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Figure 4.10 The help window offers a user support to the different calculations accessible in
the I.S.A.A.C.S. program. The 1st tab provides information regarding the fields
of the dialog box controlling the calculation of the radial distribution functions.
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19 4.2. Running a calculation

Figure 4.11 The 2nd tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the structure factor from the Fourier
transform of the radial distribution functions in the I.S.A.A.C.S. program.

19



Running I.S.A.A.C.S. 20

Figure 4.12 The 3rd tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the structure factor from the Debye
equation in the I.S.A.A.C.S. program.
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21 4.2. Running a calculation

Figure 4.13 The 4th tab of the help window provides information regardingthe fields of the
dialog box controlling the extra options for the calculation of the structure factor
from the Debye equation in the I.S.A.A.C.S. program.

21



Running I.S.A.A.C.S. 22

Figure 4.14 The 5th tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the radial distribution functions from
the Fourier transform of the structure factor calculated using the Debye equa-
tion.
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23 4.2. Running a calculation

Figure 4.15 The 6th tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the bond properties in the I.S.A.A.C.S.
program.

23



Running I.S.A.A.C.S. 24

Figure 4.16 The 7th tab of the help window provides information regardingthe fields of
the dialog box controlling the calculation of the angles distributions in the
I.S.A.A.C.S. program.
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25 4.2. Running a calculation

Figure 4.17 The 8th tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the ring statistics in the I.S.A.A.C.S.
program.

25
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Figure 4.18 The 9th tab of the help window provides information regardingthe fields of the
dialog box controlling the calculation of the local order parameters from the
invariants of spherical harmonics in the I.S.A.A.C.S. program.
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27 4.2. Running a calculation

Figure 4.19 The 10th tab of the help window provides information regarding the fields of
the dialog box controlling the calculation of the bond valence sums in the
I.S.A.A.C.S. program.
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Figure 4.20 The 11th tab of the help window provides information regarding the fields of the
dialog box controlling the calculation of the mean square displacement in the
I.S.A.A.C.S. program.
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29 4.3. Visualisation of the results of the calculations

4.3 Visualisation of the results of the calculations

When a particular structural characteristic is computed it can be directly displayed in the main
I.S.A.A.C.S. windows [Fig.3.1]. In addition the visualization mode of most of the computed
characteristics can be controlled via interactive menus such as the one presented in figure [Fig.
4.21-a].
When a button in an interaction menu is activated [Fig.4.21-a] the corresponding result is
instantaneously displayed as a smooth curve or a histogram [Fig. 4.21-b, 4.22, 4.23, 4.24]
depending on the nature of the computed structural characteristic.

Figure 4.21 Results of the calculation of the radial distribution functions for glassy SiO2 by
the I.S.A.A.C.S. program: the interaction box a) allows to display the computed
RDFs, b) shows the total radial distribution function obtained for SiO2 glass in
case of neutrons diffraction. The RDF shows a first sharp peak position at 1.6 Å
reflecting the presence of well defined Si(O)4 tetrahedra in the glass. The second
RDF peak reflects the correlations between O atoms sitting on the vertices of
those tetrahedra.
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Figure 4.22 Results from the calculation of the angle distribution for glassy SiO2 by the
I.S.A.A.C.S. program: the figure represents the distribution of the bond angles
(O-Si-O) computed and immediately displayed using I.S.A.A.C.S.. In SiO2 glass
the O-Si-O angle distribution peaks at about 109◦ as may be expected for tetra-
hedral Si-O coordination.

Figure 4.23 Ring statistics for silica glass as computed by I.S.A.A.C.S.These results present
the average number of rings per atom in the simulation box fora maximum ring
size fixed to 20 atoms. Note if the number of rings is normalizedper Si(O)4
unit and not per atom the "ring size" would drop by a factor of two, i.e. the
distribution would peak around rings made of seven Si(O)4 units.
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31 4.3. Visualisation of the results of the calculations

Figure 4.24 Results of the calculation of the spherical harmonics as local order parameters
for SiO2 glass by the I.S.A.A.C.S. program: a) average Ql computed for the
Si(O)4 environments (distorted tetrahedra) in glassy SiO2, compared with b) av-
erage Ql computed for the Si(O)4 environments (ideal tetrahedra) in crystalline
quartz-α. The two sets of Ql’s follow a similar trend showing the similarity
between the structural units in crystalline and glassy SiO2. The differences are
mostly quantitative and are due to the fact that the Si-O tetrahedra are somewhat
distorted in the glass.
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4.4 Data plot edition

Since version 2.0, I.S.A.A.C.S. offers a curves editing toolwhich allows to configure the layout
of the graphs showing result from the calculations. This data plot editing tool is accessible
through the ’Curve’ menu of any graph window [Fig.4.25].

Figure 4.25 The ’Curve’ menu of the graph window in the I.S.A.A.C.S. program.

Using the data plot editing tool [Fig.4.26] it is possible to configure the layout of the selected
graph, as well as the layout each data set which happen to be plotted on the graph [Fig.4.26-a)],
it is also possible to configure X and Y axis layout and/or position [Fig. 4.26-b)]. Furthermore
depending on the calculation several data sets can be selected and plotted together with the main
data set of the active window [Fig.4.26-c)].
Data plot edition in the I.S.A.A.C.S. program is illustratedwith the examples in [Fig.4.27] and
[Fig. 4.28].

Figure 4.26 The data plot editing tool box in the I.S.A.A.C.S. program.
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Figure 4.27 Summary of the results of the calculation of the radial distribution functions for
glassy SiO2 by the I.S.A.A.C.S. program: total neutron g(r) and G(r) distribu-
tion functions (see Sec.5.2 and 5.3 for details) as well as partial O-Si distri-
bution function are displayed on the same graph, layout, legend and axis scales
are configured

Figure 4.28 Summary of the results of ring statistics for silica glass ascomputed by
I.S.A.A.C.S.. Rc and Pn for shortest path analysis (see Sec.5.5 for details)
are displayed on the same graph, layout, legend and axis scales are configured.
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4.5 Exporting an image

Thanks to the ’Curve’ menu [Fig.4.25], plots can be exported from every graph window in the
I.S.A.A.C.S. program. Images can be saved in the ’PNG’Portable Network Graphics, ’PDF’
Portable Document Fileand ’SVG’Scalable Vector Graphics formats.

4.6 Saving the data

Results computed by I.S.A.A.C.S. can be easily saved using thestandard copy and paste method
(for the results presented in the main I.S.A.A.C.S. window) or using the ’Data menu’ [Fig.
4.29]. Also the user has the possibility to export data either in araw ASCII format (simple two

Figure 4.29 The ’Data’ menu of the graph window in the I.S.A.A.C.S. program.

columns file with x and y) or in the Xmgrace format which can be used immediately in the
Grace WYSIWYG 2D plotting tool [28] for a further analysis.
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Figure 4.30 Illustration of the utilization of the Xmgrace export filterin the I.S.A.A.C.S. pro-
gram.
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Figure [Fig. 4.30] shows the data immediately saved from the results presented in figure [Fig.
4.23] using the Xmgrace export filter of the I.S.A.A.C.S. program.
Note that if more than one data sets are presented on the same graph window, then all data sets
will be written in the same file when saving the data. Thus, fora particular calculation, if all
data sets are added to the graph window using the data plot editing tool [Fig. 4.26], then all the
data result of this analysis can be saved at once. This is truefor both ASCII and Xmgrace file
formats.
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The physics in I.S.A.A.C.S.

5.1 The periodic boundary conditions

Taking into account the finite size of model/simulation box is crucial to computing correctly
many of the structural characteristics (e.g. ring statistics) of the system being studied.
The importance of the finite size of model box can be illustrated using a 1dm3 edged cube of
water (1 L) at room temperature. This cube contains approximately 3.3×1025 water molecules,
each of them can be considered as a sphere having a diameter of2.8 Å. Following this scheme
surface interactions can affect up to 10 layers of spheres (water molecules) far from the surface
of the model cubic box. In this case the number of water molecules exposed to the surface is
about 2×1019, which is a small fraction of the total numebr of molecules inthe model.
Currently structure models often contain somewhere from 1 thousand to several thousands of
molecules/atoms. As a result a very substantial fraction ofthem will be influenced by the finite
size of the simulation/model box. The problems is solved by applying the so-calledPeriodic
BoundaryConditions "PBC" which means surrounding the simulation box with its translational
images in the 3 directions of space, as illustrated below. Users of I.S.A.A.C.S. should take
special care that their model boxes are inhearently periodic so that when the periodic boundary
conditions are applied the structural characteristics computed are not compromized.

Figure [Fig.5.1] illustrates the principle of the periodic boundary conditions that can be used1

in I.S.A.A.C.S.: a particle which goes out from the simulation box by one side is reintroduced
in the box by the opposite side (in the 3 dimensions of space).The maximum inter-atomic
distance rcut which is taken into account in the calculations is therefore equal to the half of the
edge of the simulation box:

rcut = L/2 (5.1)

The surface/finite model size effects would therefore be small, if any. In general, the larger the
simulation box and the number of molecules/atoms in it, the smaller the surface/size effects will
be.

1Please note that the use of PBC is not mandatory, isolated molecules can be studied using I.S.A.A.C.S.
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Chapter 5. The physics in I.S.A.A.C.S. 38

Figure 5.1 Schematic representation of the idea of periodic boundary conditions.

5.2 Radial distribution functions fundamentals

The Radial Distribution Function, R.D.F. , g(r), also called pair distribution function or pair cor-
relation function, is an important structural characteristic, therefore computed by I.S.A.A.C.S.
Considering a homogeneous distribution of the atoms/molecules in space, theg(r) represents

the probability to find an atom in a shelldr at the distancer of another atom chosen as a refer-
ence point [Fig.5.2]. By dividing the physical space/model volume into shells dr[Fig. 5.2] it is
possible to compute the number of atomsdn(r) at a distance betweenr andr +dr from a given
atom:

dn(r) =
N
V

g(r) 4π r2 dr (5.2)

whereN represents the total number of atoms,V the model volume and whereg(r) is the radial
distribution function. In this notation the volume of the shell of thicknessdr is approximated:

(

Vshell =
4
3

π(r +dr)3 −
4
3

πr3 ≃ 4π r2 dr

)

(5.3)

When more than one chemical species are present the so-calledpartial radial distribution func-
tionsgαβ(r) may be computed :

gαβ(r) =
dnαβ(r)

4πr2 dr ρα
with ρα =

V
Nα

=
V

N×cα
(5.4)
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39 5.2. Radial distribution functions fundamentals

Figure 5.2 Space discretization for the evaluation of the radial distribution function.

wherecα represents the concentration of atomic speciesα.
These functions give the density probability for an atom of theα species to have a neighbor of
theβ species at a given distancer. The example features GeS2 glass.
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Figure 5.3 Partial radial distribution functions of glassy GeS2 at 300 K.

Figure [Fig5.3] shows the partial radial distribution functions for GeS2 glass at 300 K. The total
RDF of a system is a weighterd sum of the respective partial RDFs, with the weights depend
on the relative concentration and x-ray/neutron scattering amplitudes of the chemical species
involved.
It is also possible to use the reducedGαβ(r) partial distribution functions defined as:

Gαβ(r) = 4πrρ0
(
gαβ(r) −1

)
(5.5)
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I.S.A.A.C.S. gives access to the partialgαβ(r) andGαβ(r) distribution functions. Two methods
are available to compute the radial distribution functions:

• The standard real space calculation typical to analyze 3-dimensional models

• The experiment-like calculation using the Fourier transform of the structure factor ob-
tained using the Debye equation (see Sec.5.3for details).

5.3 Neutrons and X-rays scattering

Model static structure factorsS(q) may be compared to experimental scattering data and that is
why are useful structural characteristics computed by I.S.A.A.C.S.Thereafter we describe the
theoretical background ofS(q)s computed by I.S.A.A.C.S.

5.3.1 Total scattering - Debye approach

Neutron or X-ray scattering static structure factorS(q) is defined as:

S(q) =
1
N ∑

j,k

b j bk

〈

eiq[r j − rk]
〉

(5.6)

whereb j et r j represent respectively the neutron or X-ray scattering length, and the position of
the atomj. N is the total number of atoms in the system studied.
To take into account the inherent/volume averaging of scattering experiments it is necessary to
sum all possible orientations of the wave vectorq compared to the vectorr j − rk. This average
on the orientations of theq vector leads to the famous Debye’s equation:

S(q) =
1
N ∑

j,k

b j bk
sin(q|r j − rk|)

q|r j − rk|
(5.7)

Nevertheless the instantaneous individual atomic contributions introduced by this equation [Eq.
5.7] are not easy to interpret. It is more interesting to expressthese contributions using the
formalism of radial distribution functions [Sec.5.2].
In order to achieve this goal it is first necessary to split theself-atomic contribution (j = k),
from the contribution between distinct atoms:

S(q) = ∑
j

c jb
2
j +

1
N ∑

j 6=k

b j bk
sin(q|r j − rk|)

q|r j − rk|
︸ ︷︷ ︸

I(q)

(5.8)

with c j =
Nj

N
.

4π ∑
j

c jb
2
j represents the total scattering cross section of the material.
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The functionI(q) which describes the interaction between distinct atoms is related to the radial
distribution functions through a Fourier transformation:

I(q) = 4πρ
Z ∞

0
dr r2 sinqr

qr
G(r) (5.9)

where the functionG(r) is defined using the partial radial distribution functions [Eq. 5.4]:

G(r) = ∑
α,β

cαbα cβbβ (gαβ(r)−1) (5.10)

wherecα =
Nα
N

andbα represents the neutron or X-ray scattering length of species α.

G(r) approaches -− ∑
α,β

cαbα cβbβ for r = 0, and 0 forr → ∞.

Usually the self-contributions are substracted from equation [Eq. 5.8] and the structure factor
is normalized using the relation:

S(q) − 1 =
I(q)

〈b2〉
avec 〈b2〉 =

(

∑
α

cαbα

)2

(5.11)

It is therefore possible to write the structure factor [Eq.5.7] in a more standard way:

S(q) = 1 + 4πρ
Z ∞

0
dr r2 sinqr

qr
(g(r)−1) (5.12)

whereg(r) (the radial distribution function) is defined as:

g(r) =

∑
α,β

cαbα cβbβ gαβ(r)

〈b2〉
(5.13)

In the case of a single atomic species system the normalization allows to obtain values ofS(q)
andg(r) which are independent of the scattering factor/length and therefore independent of the
measurement technique. In most cases, however, the totalS(q) andg(r) are combinations of the
partial functions weighted using the scattering factor andtherefore depend on the measurement
technique (Neutron, X-rays ...) used or simulated.

Figure [Fig. 5.4] presents a comparison bewteen the calculations of the total neutron structure
factor done using the Debye relation [Eq.5.7] and the pair correlation functions [Eq.5.12].
The material studied is a sample of glassy GeS2 at 300 K obtained using ab-initio molecular
dynamics. In several cases the structure factorS(q) and the radial distribution functiong(r)
[Eq. 5.13] can be compared to experimental data. To simplify the comparison I.S.A.A.C.S.
computes several radial distribution funcrions used in practice suh asG(r) defined [Eq.5.10],
the differential correlation functionD(r), G(r), and the total correlation functionT(r) defined
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Figure 5.4 Total neutron structure factor for glassy GeS2 at 300 K -A Evaluation using the
atomic correlations [Eq.5.7], B Evaluation using the pair correlation functions
[Eq. 5.12].

by:

D(r) = 4πrρ G(r) (5.14)

G(r) =
D(r)
〈b2〉

T(r) = D(r) + 4πrρ 〈b2〉

g(r) equals zero forr = 0 and approaches 1 forr → ∞.
D(r) equals zero forr = 0 and approaches 0 forr → ∞.
G(r) equals zero forr = 0 and approaches 0 forr → ∞.
T(r) equals zero forr = 0 and approaches∞ for r → ∞.
This set of functions for a model of GeS2 glass (at 300 K) obtained using ab-intio molecular
dynamics is presented in figure [Fig.5.5].

I.S.A.A.C.S. can compute, for the case of x-ray or neutrons, the following functions:

• S(q) andQ(q) = q[S(q)−1.0] [9, 10] computed using the Debye equation

• S(q) andQ(q) = q[S(q)−1.0] [9, 10] computed using the Fourier transform of theg(r)

• g(r) andG(r) computed using the standard real space calculation

• g(r) andG(r) computed using the Fourier transform of the structure factor calculated
using the Debye equation
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Figure 5.5 Exemple of various distribution functions neutron-weighted in glassy GeS2 at 300
K.

5.3.2 Partial structure factors

There are a few, somewhat different definitions of partialsS(q) used in practice, and computed
by I.S.A.A.C.S.

5.3.2.1 Faber-Ziman definition/formalism

One way used to define the partial structure factors has been proposed by Faber and Ziman [11].
In this approach the structure factor is represented by the correlations between the different
chemical species. To describe the correlation between theα and theβ chemical species the
partial structure factorSFZ

αβ (q) is defined by:

SFZ
αβ (q) = 1 + 4πρ

Z ∞

0
dr r2 sinqr

qr

(
gαβ(r)−1

)
(5.15)

where thegαβ(r) are the partial radial distribution functions [Eq.5.4].
The total structure factor is then obtained by the relation:

S(q) = ∑
α,β

cαbα cβbβ

[

SFZ
αβ (q) − 1

]

(5.16)
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5.3.2.2 Ashcroft-Langreth definition/formalism

In a similar approach, based on the correlation between the chemical species, and developped
by Ashcroft et Langreth [12–14], the partial structure factorsSAL

αβ(q) are defined by:

SAL
αβ(q) = δαβ + 4πρ

(
cαcβ

)1/2
Z ∞

0
dr r2 sinqr

qr

(
gαβ(r)−1

)
(5.17)

whereδαβ is the Kronecker delta,cα =
Nα
N

, and thegαβ(r) are the partial radial distribution

functions [Eq.5.4].
Then the total structure factor can be calculated using:

S(q) =

∑
α,β

bαbβ
(
cαcβ

)1/2
[

SAL
αβ(q) + 1

]

∑
α

cαb2
α

(5.18)

5.3.2.3 Bhatia-Thornton definition/formalism

In this approach, used in the case of binary systems ABx [15] only, the total structure factor
S(q) can be express as the weighted sum of 3 partial structure factors:

S(q) =
〈b〉2SNN(q)+2〈b〉(bA −bB)SNC(q)+(bA −bB)2SCC(q)− (cAb2

A +cBb2
B)

〈b〉2 + 1 (5.19)

where〈b〉 = cAbA +cBbB, with cA andbA reprensenting respectively the concentration and the
scattering length of species A.
SNN(q), SNC(q) andSCC(q) represent combinaisons of the partial structure factors calculated
using the Faber-Ziman formalism and weighted using the concentrations of the 2 chemical
species:

SNN(q) =
2

∑
A=1

2

∑
B=1

cAcBSFZ
AB(q) (5.20)

SNC(q) = cAcB ×
[

cA ×
(
SFZ

AA (q)−SFZ
AB(q)

)
− cB ×

(
SFZ

BB(q)−SFZ
AB(q)

) ]
(5.21)

SCC(q) = cAcB ×

[

1+cAcB ×

[
2

∑
A=1

2

∑
B6=A

(
SFZ

AA (q)−SFZ
AB(q)

)

]]

(5.22)

• SNN(q) is the Number-Number partial structure factor.
Its Fourier transform allows to obtain a global descriptionof the structure of the solid,
ie. of the repartition of the experimental scattering centers, or atomic nuclei, positions.
The nature of the chemical species spread in the scattering centers is not considered.
Furthermore ifbA = bB thenSNN(q) = S(q).
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45 5.3. Neutrons and X-rays scattering

• SCC(q) is the Concentration-Concentration partial structure factor.
Its Fourier transform allows to obtain an idea of the distribution of the chemical species
over the scattering centers described using theSNN(q). Therefore theSCC(q) describes
the chemical order in the material. In the case of an ideal binary mixture of 2 chemical
speciesA andB2, SCC(q) is constant and equal tocAcB. In the case of an ordered chemical
mixture (chemical species with distinct diameters, and with heteropolar and homopolar
chemical bonds) it is possible to link the variations of theSCC(q) to the product of the
concentrations of the 2 chemical species of the mixture:

• SCC(q) = cAcB: radom distribution.

• SCC(q) > cAcB: homopolar atomic correlations (A-A, B-B) prefered.

• SCC(q) < cAcB: heterpolar atomic correlations (A-B) prefered.

• 〈b〉 = 0: SCC(q) = S(q).

• SNC(q) is the Number-Concentration partial structure factor.
Its Fourier transform allows to obtain a correlation between the scattering centers and
their occupation by a given chemical species. The more the chemical species related
partial structure factors are different (SAA(q) 6= SBB(q)) and the more the oscillations are
important in theSNC(q). In the case of an ideal mixtureSNC(q) = 0, and all the informa-
tion about the structure of the system is given by theSNN(q).

If we consider the binary mixture as an ionic mixture then it is possible to calculate the Charge-
ChargeSZZ(q) and the Number-ChargeSNZ(q) partial structure factors using the Concentration-
ConcentrationSCC(q) and the Number-ConcentrationSNC(q):

SZZ(q) =
SCC(q)

cAcB
and SNZ(q) =

SNC(q)

cB/ZA
(5.23)

cA et ZA represent the concentration and the charge of the chemical species A, the global
neutrality of the system must be respected thereforecAZA +cBZB = 0.

Figure [Fig.5.6] illustrates, and allows to compare, the partial structurefactors of glassy GeS2
at 300 K calculated in the different formalisms Faber-Ziman[11], Ashcroft-Langreth [12–14],
and Bhatia-Thornton [15].

I.S.A.A.C.S. can compute the following partial structure factors:

• Faber-ZimanSFZ
αβ (q)

• Ashcroft-LangrethSAL
αβ(q)

• Bhatia-ThorntonSNN(q), SNC(q), SCC(q) andSZZ(q)

2Particles that can be described using spheres of the same diameter and occupying the same molar volume,
subject to the same thermal constrains, in a mixture where the substitution energy of a partcile by another is equal
to zero.
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Figure 5.6 Partial structure factors of glassy GeS2 at 300 K. A Faber-Ziman [11], B
Ashcroft-Langreth [12–14] et C Bhatia-Thornton [15].
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47 5.4. Local atomic coordination properties

5.4 Local atomic coordination properties

Several properties related to the atomic bonds and angles between them can be computed us-
ing I.S.A.A.C.S. In I.S.A.A.C.S. the existence or the absenceof a bond between two atomsi
of speciesα and j of speciesβ is determined by the analysis of the partialgαβ(r) and total
g(r) radial distribution functions. Precisely the program willconsider that a bond exists if the
interatomic distanceDi j is smaller than both the cutoff given to desribe the maximum distance
for first neighbor atoms between the speciesα andβ, Rcutαβ (often the first minimum of the
partial radial distribution functiongαβ(r)), and the first minimum of the total radial distribution
function,Rcuttot.
I.S.A.A.C.S. allows the user to specify bothRcutαβ andRcuttot to choose an appropriate defini-
tion of the atomic bonds to described the system under study.When atomic bonds in a model
are defined properly other structural characteristics can be evaluated, as follows:

5.4.1 Average first coordination numbers

I.S.A.A.C.S. computes total as well as partials coordinations numbers.

Figure 5.7 Coordination numbers.

5.4.2 Individual atomic neighbor analysis

I.S.A.A.C.S. computes the fraction of each type of first coordination spheres occurring in the
model. The presence of of structural deffects can lead to a wide number of local structural
environments, figure [Fig.5.8] illustrates the differents first coordination spheres that can be
found in a GeS2 glass.

5.4.3 Proportion of tetrahedral links and units in the structure model

Often the structure of a material is represented using building blocks. One of the the most
frecuently occuring building blocks are tetrahedra. Figure [Fig. 5.9] shows a model of GeS2
materials using GeS4 tetrahedra as building blocks.
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Figure 5.8 Illustration of several coordination spheres that can be found in glassy GeS2.

Figure 5.9 Illustration of the presence of GeS4 tetrahedra in the GeS2 material’s family. a)
GeS4 tetrahedra, representations b) of theα-GeS2 crystal and c) of the GeS2 glass
using tetrahedra.

I.S.A.A.C.S. computes the fraction of the differents tetrahedra in materials, the distinction be-
tween these tetrahedra being made on the nature of the connection between each of them. Tetra-
hedra can be linked either by corners or edges [Fig.5.10], I.S.A.A.C.S. computes the fraction
of atoms forming tetrahedra as well as to the fraction of linked tetrahedra.

5.4.4 Distribution of bond lengths for the first coordination sphere

I.S.A.A.C.S. gives access to the bond length distribution between first neighbor atoms [Fig.
5.11].
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49 5.4. Local atomic coordination properties

Figure 5.10 Corner sharing (left) and edge sharing (right) tetrahedra.

Figure 5.11 Nearest neighbor distances distribution.

5.4.5 Angles distribution

Using I.S.A.A.C.S. it is very easy to compute bond angles and dihedral angles [Fig.5.12]
distributions:

Figure 5.12 Bond angles (left) and diehdral angles (right).
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5.5 Ring statistics

The analysis of the topology of network-type structure models (liquid, crystalline or amorphous
systems) is often based on the part of the structural information which can be represented in the
graph theory using nodes for the atoms and links for the bonds. The absence or the existence of
a link between two nodes is determined by the analysis of the total and partial radial distribution
functions of the system.
In such a network a series of nodes and links connected sequentially without overlap is called a
path. Following this definition a ring is therefore simply a closed path. If we study thoroughly
a specific node of this network we see that this node can be involved in numerous rings. Each
of these rings is characterized by its size and can be classified based upon the relations between
the nodes and the links which constitute it.

5.5.1 Size of the rings

There are two possibilities for the numbering of rings. On the one hand, one can use the total
number of nodes of the ring, therefore a N-membered ring is a ring containing N nodes. One
the other hand, one can use the number ofnetwork formingnodes (ex: Si atoms in SiO2 and Ge
atoms in GeS2 which are the atoms of highest coordination in these materials) an N-membered
ring is therefore a ring containing 2×N nodes. For crystals and SiO2-like glasses the second
definition is usually applied. Nevertheless the first methodhas to be used in the case of chalco-
genide liquids and glasses in order to count rings with homopolar bonds (ex: Ge-Ge and S-S
bonds in GeS2) - See Section5.5.5for further details.
From a theoretical point of view it is possible to obtain an estimate for the ring of maximum
size that could exist in a network. This theoretical maximumsize will depend on the properties
of the system studied as well as on the definition of a ring.

5.5.2 Definitions

5.5.2.1 King’s shortest paths criterion

The first way to define a ring has been given by Shirley V. King [16] (and later by Franzblau
[17]). In order to study the connectivity of glassy SiO2 she defines a ring as the shortest path
between two of the nearest neighbors of a given node [Fig.5.13].
In the case of the King’s criterion one can calculate the maximum number of different ring sizes,
NSmax(KSP), which can be found using the atomAt to initiate the search:

NSmax(KSP) =
Nc(At)× (Nc(At)−1)

2
(5.24)

whereNc(At) is the number of neighbors of atomAt . NSmax(KSP) represents the number of
ring sizes found if all couples of neighbors of atomAt are connected together with paths of
different sizes.
It is also possible to calculate the theoretical maximum size, TMS(KSP), of a King’s shortest
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51 5.5. Ring statistics

Figure 5.13 King’s criterion in the ring statistics: a ring represents the shortest path between
two of the nearest neighbors (N1 andN2) of a given node (At ).

path ring in the network using:

TMS(KSP) = 2 × (Dmax − 2) × (Ncmax − 2) + 2 × Dmax (5.25)

whereDmax is the longest distance, in number of chemical bonds, separating two atoms in
the network, andNcmax represents the average number of neighbors of the chemical species
of higher coordination. If used when looking for rings, periodic boundary conditions have to
be taken into account to calculateDmax. The relation [Eq.5.25] is illustrated in figure [Fig.
5.16-2].

5.5.2.2 Guttman’s shortest paths criterion

A later definition of ring was proposed by Guttman [18], who defines a ring as the shortest path
which comes back to a given node (or atom) from one of its nearest neighbors [Fig.5.14].

Figure 5.14 Guttman’s criterion in the ring statistics: a ring represents the shortest path
which comes back to a given node (At ) from one of its nearest neighbors (N).

Differences between the King and the Guttman’s shortest paths criteria are illustrated in figure
[Fig. 5.15].
Like for the King’s criterion, with the Guttman’s criterionone can calculate the maximum
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Figure 5.15 Differences between the King and the Guttman shortest paths criteria for the
ring statistics in an AB2 system. In these two examples the search is initiated
from chemical species A (blue square). The nearest neighbor(s) of chemical
species B (green circles) are used to continue the analysis.1) In the first example
only rings with 4 nodes are found using the Guttman’s criterion, whereas rings
with 18 nodes are also found using the King’s criterion (29 rings with 18 nodes).
2) In the second example the King’s shortest path criterion allows to find the
ring with 8 nodes ignored by the Guttman’s criterion which is only able to find
the rings with 6 nodes.

number of different ring sizes,NSmax(GSP), which can be found using the atomAt to initiate
the search:

NSmax(GSP) = Nc(At)−1 (5.26)

whereNc(At) is the number of neighbors of atomAt . NSmax(GSP) represents the number of
ring sizes found if the neighbors of atomAt are connected together with paths of different sizes.
It is also possible to calculate theTheoreticalMaximumSize,TMS(GSP), of a Guttman’s ring
in the network using:

TMS(GSP) = 2 × Dmax (5.27)

whereDmaxrepresents the longest distance, in number of chemical bonds, separating two atoms
in the network. If used when looking for rings, periodic boundary conditions have to be taken
into account to calculateDmax. The relation [Eq.5.27] is illustrated in figure [Fig.5.16-1].
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53 5.5. Ring statistics

Figure 5.16 Theoretical maximum size of the rings for an AB2 system (Ncmax = NcA = 4)
and using: 1) the Guttman’s criterion, 2) the King’s criterion. The theoretical
maximum size represent the longest distance between two nearest neighbors 1
and 2 (green circles) of the atomAt used to initiate the search (blue square).

Since the introduction of the King’s and the Guttman’s criteria other definitions of rings have
been proposed. These definitions are based on the propertiesof the rings to be decomposed into
the sum of smaller rings.

5.5.2.3 The primitive rings criterion

A ring is primitive [19, 20] (or Irreducible [21]) if it can not be decomposed into two smaller
rings [Fig.5.17].

Figure 5.17 Primitive rings in the ring statistics: the ’AC’ ring defined by the sum of the A
and the C paths is primitive only if there is no B path shorter than A and shorter
than C which allows to decompose the ’AC’ ring into two smaller rings ’AB’ and
’AC’.

The primitive rings analysis between the paths in figure [Fig. 5.17] may lead to 3 results de-
pending on the relations between the paths A, B, and C:
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• If paths A, B, and C have the same length: A = B = C then the rings ’AB’, ’AC’ and ’BC’
are primitives.

• If the relation between the paths is like ?=? <? (ex: A = B < C) then 1 smaller ring
(’AB’) and 2 bigger rings (’AC’ and ’BC’) exist. None of these rings can be decomposed
into the sum of two smaller rings therefore the 3 rings are again primitives.

• If the relation between the path is like ?<?=? (ex: A < B = C) or ?<?<? (ex: A < B <
C) then a shortest path exists (A). It will be possible to decompose the ring (’BC’) built
without this shortest path into the sum of 2 smaller rings (’AB’ and ’AC’), therefore this
ring will not be primitive.

5.5.2.4 The strong rings criterion

The strong rings [19, 20] are defined by extending the definition of primitive rings. Aring is
strong if it can not be decomposed into a sum of smaller rings whatever this sum is, ie. whatever
the number of paths in the decomposition is.

Figure 5.18 Strong rings in the ring statistics:a) the 9-carbon-atoms ring created after
breaking a C-C bond in a Buckminster fulleren molecule is a counterexample
of strong ring; b) the combination of shortest rings, 11 5-carbon-atoms rings
and 19 6-carbon-atoms rings, appears easily after the deformation of the C60

molecule.

By definition the strong rings are also primitives, thereforeto search for strong rings can be
summed as to find the strong rings among the primitive rings. This technique is limited to
relatively simple cases, like crystals or structures such as the one illustrated in figure [Fig.5.18].
On the one hand the CPU time needed to complete such an analysisfor amorphous systems is
very important. On the other hand it is not possible to searchfor strong rings using the same
search depth than for other types of rings. The strong ring analysis is indeed diverging which
makes it very complex to implement for amorphous materials.
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55 5.5. Ring statistics

In the case of primitive rings like in the case of strong rings, there is no theoretical maximum
size of rings in the network.

5.5.3 Description of a network using ring statistics - existing tools

Ring statistics are mainly used to obtain a snapshot of the connectivity of a network. Thereby
the better the snapshot will be, the better the description and the understanding of the properties
of the material will be. In the literature many papers present studies of materials using ring
statistics. In these studies either the number ofRings perNode ’RN’ [ 29, 30] or the number of
Rings perCell ’RC’ [ 31–33] are given as a result of the analysis. The first (RN) is calculated
for one node by counting all the rings correponding to the property we are looking for (King’s,
Guttman’s, primitive or strong ring criterion). The second(RC) is calculated by counting all
the different rings corresponding at least once (at least for one node) to the property we are
looking for (King’s, shortest path, primitive or strong ring criterion). The values ofRN andRC

are often reduced to the number of nodes of the networks. Furthermore the results are presented
according to each size of rings.
An example is proposed with a very simple network illustrated in figure [Fig. 5.19]. This
network is composed of 10 nodes, arbitrary of the same chemical species, and 7 bonds. Fur-
thermore it is clear that in this network there are 1 ring with3 nodes and 1 ring with 4 nodes.

Figure 5.19 A very simple network.

It is easy to calculateRN andRC for the network in figure [Fig.5.19] (n = number of nodes):

n RN(n)

3 1/10
4 1/10

n RC(n)

3 3/10
4 4/10

In the literature the values ofRN andRC are usually given separately [29–33].
Nevertheless these two properties are not sufficient in order to describe a network using rings.
A simple example is proposed in figure [Fig.5.20]. The two networks [Fig. 5.20-a] and
[Fig. 5.20-b] do have very similar compositions with 10 nodes and 7 links but they are clearly
different. Nevertheless the previous definitions of rings per cell and rings per node even taken
together will lead to the same description for these two different networks [Tab.5.1].
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Figure 5.20 Two simple networks having very close compositions: 10 nodes and 7 links.

n RN(n)

3 1/10
4 1/10

n RN(n)

3 3/10
4 4/10

Table 5.1 RN and RC calculated for the networks illustrated in figure [Fig.5.20].

In both cases a) and b) there are 1 ring with 3 nodes and 1 ring with 4 nodes. It has to be noticed
that these two rings have properties which correspond to each of the definitions introduced
previously (King, Guttman, primitive and strong). Thus none of these definitions is able to help
to distinguish between these two networks. Therefore eventhough these simple networks are
different, the previous definitions lead to the same description.

Thereby it is justified to wonder about the interpretation ofthe data presented in the literature
for amorphous systems with a much higher complexity.

5.5.4 Rings and connectivity: the new R.I.N.G.S. method implementedin
I.S.A.A.C.S.

In the I.S.A.A.C.S. program the results of the ring statistics analysis are outputted following
the new R.I.N.G.S. method [22, 34], this method is presented in the next pages.

The first goal of ring statistics is to give a faithful description of the connectivity of a
network and to allow to compare this information with othersobtained for already existing
structures. It is therefore important to find a guideline which allows to establish a distinction
and then a comparison between networks studied using ring statistics. We propose thereafter
a new method to achieve this goal. First of all we noticed fundamental points that must be
considered to get a reliable and transferable method:

1. The results must be reduced to thetotal number of nodes in the network.
The nature of the nodes used to initiate the analysis when looking for rings will have a
significant influence, therefore it is essential to reduce the results to a value for one node.
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Otherwise it would be impossible to compare the results to the ones obtained for systems
made of nodes (particles) of different number and/or nature.

2. Different networks must be distinguishable whatever the method used to define a ring.
Indeed it is essential for the result of the analysis to be trustworthy independently of the
method used to define a ring (King, Guttman, primitives, strong). Furthermore this will
allow to compare the results of these different ring statistics.

5.5.4.1 Number of rings per cell ’RC’

We have already introduced this value, which is the first and the easiest way to compare net-
works using ring statistics.

Figure 5.21 The first comparison element: the total number of rings in thenetwork.

a) b)
n RC(n)

3 1/10
4 1/10

n RC(n)

3 0/10
4 2/10

Table 5.2 Number of rings in the simple networks represented in figure [Fig. 5.21].

In the most simple cases, such as the one represented in figure[Fig. 5.21], the networks can be
distinguished using only the number of rings [Tab.5.2]. Nevertheless in most of the cases other
informations are needed to describe accurately the connectivity of the networks.

5.5.4.2 Description of the connectivity: difference between rings and nodes

The second information needed to investigate the properties of a network using rings is the
evaluation of the connectivity between rings. Indeed the distribution of the ring sizes gives
a first information on the connectivity, nevertheless it cannot be exactly evaluated unless
one studies how the rings are connected. The impact of the relations between rings, already
presented in figure [Fig.5.20], has been illustrated in detail in figure [Fig.5.22]. Figure [Fig.
5.22] represents the different possibilities to combine 2 ringswith 6 nodes and 1 ring with 4
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Figure 5.22 Illustration of the 9 different newtorks with 16 nodes, composed of 2 rings with
6 nodes and 1 ring with 4 nodes.

nodes in a network composed of 16 nodes. Among the 9 networks presented in figure [Fig.
5.22] none can be distinguished using theRC value [Tab.5.3].

Table 5.3 Number of rings for the different networks presented in figure [Fig. 5.22].

n RC(n)

4 1/16
6 2/16

Furthermore it is not possible to distinguish these networks using theRN value. It seems
possible to isolate the case a) [Tab.5.4] from the other cases b)→ i) [Tab. 5.4]. Nevertheless
the results obtained using the primitive rings criterion are similar for all cases a)→ i) [Tab.
5.4], this is in contradiction with the second statement [2] proposed in our method.

Before introducing parameters able to distinguish the configurations presented in figure
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Case a) RN(n)
n King / Guttman. Primitive / Strong.

4 4/16 4/16
6 10/16 12/16

Cases b)→ i) RN(n)
n All criteria.

4 4/16
6 12/16

Table 5.4 Number of rings per node for the networks presented in figure [Fig. 5.22].

[Fig. 5.22] it is important to wonder about the number of cases to distinguish. From the point
of view of the connectivity of the rings, configurations a), b), c) and d) are clearly different.
Nevertheless following the same approach configurations e)and f) on the one hand and config-
urations g), h) and i) on the other hand are identical. A schematic representation [Fig.5.23]
is sufficient to illustrate the similarity of the relations between these networks. The difference
between each of these networks does not appear in the connectivity of the rings but in the
connectivity of the particles.

Figure 5.23 Schematic representation of cases g)→ i) (1) and e)→ f) (2) illustrated in figure
[Fig. 5.22].

Thus among the networks illustrated in figure [Fig.5.22] six dispositions of the rings have to
be distinguished (a, b, c, d, e, g). The proportions of particles involved, or not involved, in the
construction of rings will become an important question.

The new tool defined in our method is able to describe accurately the information still
missing on the connectivity. It is a square symmetric matrixof size(R− r + 1)× (R− r + 1),
whereR and r represent respectively the bigger and the smaller size of a ring found when
analyzing the network: we have called this matrix the connectivity matrix [Tab. 5.5].
The diagonal elementsPN(i) of this matrix represent theProportion ofNodes at the origin of
at least one ring of sizei. And the non-diagonal elementsPN(i, j) represent theProportion of
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Cmat =








PN(r) PN(r +1, r) · · · PN(R, r)

PN(r, r +1)
. . . PN(R, r +1)

...
. ..

...
PN(r,R) · · · · · · PN(R)








Table 5.5 General connectivity matrix.

Nodes at the origin of ring(s) of sizei and j.
The matrix elements have a value ranging between 0 and 1. The lowest and non equal to 0 is
of the form 1

Nn, the highest and non equal to 1 is of the formNn−1
Nn , whereNn represents the

number of nodes in the network.

The connectivity matrix of the configurations illustrated in figure [Fig. 5.22] are presented
in table [Tab. 5.6]. We see that this matrix allows to distinguish each networkwhatever the
way used to define a ring is. This matrix remains simple for small systems (crystalline or
amorphous) or when using a small maximum ring size for the analysis. Nevertheless its reading
can be considerably altered when analysing amorphous systems with a high maximum ring size
for the analysis.

To simplify the reading and the interpretation of the data contained in this matrix for more
complex systems, we chose a similar approach to extract informations on the connectivity
between the rings. As a first step we decided to evaluate only the diagonal elementsPN(n) of
the general connectivity matrix. Indeed these values allowus to obtain a better view of the
connectivity than the standardRN value.
It is clear [Tab.5.7] that usingPN(n) improves the separation between the networks illustrated
in figure [Fig.5.22]. NeverthelessPN(n) does not allow to distinguish each of them. We notice
that the distinction between networks is improved [Tab.5.7] in particular when compared to
the one obtain withRN(n) [Tab. 5.4].

Therefore in a second step we chose to calculate two properties whose definitions are very
similar to the one ofPN(n). The first, namedPNmax(n), represents the proportion of nodes for
which the rings withn nodes are the longest closed paths found using these nodes toinitiate
the search. The second named,PNmin(n), represents the proportion of nodes for which the rings
with n nodes are the shortest closed paths found using these nodes to initiate the search.
The termslongestandshortest pathmust be considered carefully to avoid any confusion with
the terms used in section [S.5.5.2] to define the rings. For one node it is possible to find several
rings whose properties correspond to the definitions proposed previously (King’s, Guttman’s,
primitive or strong ring criterion). These rings are solutions found when looking for rings
using this particular node to initiate the analysis. In order to calculatePNmax(n) andPNmin(n) the
longest and the shortest path have to be determined among these different solutions.
PNmax(n) andPNmin(n) have values ranging between 0 andPN(n). The lowest and non equal to
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61 5.5. Ring statistics

King / Guttman. Primitive / Strong.

Cas a)
[
4/16 2/16
2/16 5/16

] [
4/16 4/16
4/16 7/16

]

All criteria.

Case b)
[
4/16 0/16
0/16 12/16

]

Case c)
[
4/16 1/16
1/16 12/16

]

Case d)
[
4/16 0/16
0/16 11/16

]

Case e)→ f)
[
4/16 2/16
2/16 12/16

]

Case g)→ i)
[
4/16 1/16
1/16 11/16

]

n= ring with n nodes

[
n4 n6/n4

n4/n6 n6

]

Table 5.6 General connectivity matrix for the networks represented infigure [Fig. 5.22] and
studied using the different definitions of rings.

0 is of the form 1
Nn, the highest and non equal to 1 is of the formNn−1

Nn , whereNn represents
the total number of nodes in the network. For the minimum ringsize, smin, existing in the
network or found during the search,PNmin(smin) = PN(smin). In the same way for the maxi-
mum ring size,smax, existing in the network or found during the search,PNmax(smax) = PN(smax).

To clarify these informations it is possible to normalizePNmax(n) andPNmin(n) by PN(n). By
reducing these values we obtain, for each size of rings, values independent of the total number
of nodesNn of the system. Then for a considered ring size the values onlyrefer to the number
of nodes where the search returns rings of this size:

Pmax(n) =
PNmax(n)

PN(n)
and Pmin(n) =

PNmin(n)

PN(n)

The normalized termsPmax(n) andPmin(n) have values ranging between 0 and 1. The lowest
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PN(n)
n King / Guttman. Primitive / Strong.

Case a)

4 4/16 4/16
6 5/16 7/16

PN(n)
n All criteria.

Case b)→ c)

4 4/16
6 12/16

Case d)

4 4/16
6 11/16

Case e)→ f)

4 4/16
6 12/16

Case g)→ i)

4 4/16
6 11/16

Table 5.7 PN(n) - Proportion of nodes at the origin of at least one ring of sizen for the
networks presented in figure [Fig.5.22].

and non equal to 0 is of the form1
Nn, the highest and non equal to 1 is of the formNn−1

Nn . For
the minimum ring size,smin, existing in the network or found during the search,Pmin(smin) = 1.
In the same way for the maximum ring size,smax, existing in the network or found during the
search,Pmax(smax) = 1.
Pmax(n) and Pmin(n) give complementary informations to the ones obtained withRC(n) and
PN(n) in order to distinguish and compare networks using ring statistics. We can illustrate this
result by presenting the complete informations obtained with this method [Tab.5.8] for the
networks represented in figure [Fig.5.22].
Pmax(n) andPmin(n) give informations about the connectivity of the rings with each other as a
function of their size. If a ring of sizen is found using a particular node to initiate the search,
Pmax(n) gives the probability that this ring is the longest ring which can be found using this
node to initiate the search. At the opposite,Pmin(n) gives the probability that this ring is the
shortest ring which can be found using this node to initiate the search.
Thereafter we will use the terms ’connectivity profile’ to designate the results of a ring statistics
analysis. This profile is related to the definition of rings used in the search and is made of the 4
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63 5.5. Ring statistics

King / Guttman.
n RC(n) PN(n) Pmax(n) Pmin(n)

Case a)

4 1/16 4/16 0.5 1.0
6 2/16 5/16 1.0 0.6

Primitive / Strong.
n RC(n) PN(n) Pmax(n) Pmin(n)

Case a)

4 1/16 4/16 0.5 1.0
6 2/16 7/16 1.0 3/7

All criteria.
n RC(n) PN(n) Pmax(n) Pmin(n)

Case b)

4 1/16 4/16 1.0 1.0
6 2/16 12/16 1.0 1.0

Case c)

4 1/16 4/16 0.75 1.0
6 2/16 12/16 1.0 11/12

Case d)

4 1/16 4/16 1.0 1.0
6 2/16 11/16 1.0 1.0

Case e)→ f)

4 1/16 4/16 0.5 1.0
6 2/16 12/16 1.0 10/12

Case g)→ i)

4 1/16 4/16 0.75 1.0
6 2/16 11/16 1.0 10/11

Table 5.8 Connectivity profiles results of the ring statistics for the networks presented in
figure [Fig. 5.22].
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values defined in our method:RC(n), PN(n), Pmax(n) andPmin(n).

The I.S.A.A.C.S. program provides access to the connectivity profile of the system under
study and allows to choose the study the connectivity using all the different methods used
to define a ring. Thus King’s rings, Guttman’s rings, Primitive rings as well as Strong rings
analysis are available.
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65 5.5. Ring statistics

5.5.5 Bond deffects in ring statistics

5.5.5.1 ABAB and BABA rings

The ring statistics of amorphous networks are often focusedon finding rings made of a succes-
sion of atoms with an alternation of chemical species, called ABAB rings. The most common
examples come from the alternation of Si and O atoms (in silica polymorphs) or Ge and S (in
GeS2 polymorphs). These solids are usually built with tetrahedra (SiO4 or GeS4) therefore we
study the network distribution of tetrahedra.
The ideal technique to setup the analysis of such systems is to choose the atoms of highest co-
ordination to initiate the search, respectively Si in SiO2 and Ge in GeS2. In most cases all rings
can be found using this method. Nevertheless we can demonstrate that some solutions, so some
rings, can be ignored by this analysis. This is highlighted in figure [Fig.5.24] which represents
a cluster of atoms isolated from an AB2 amorphous network.

Figure 5.24 Cluster of atoms isolated from an AB2 amorphous network. A bond defect is
located on an atom of the chemical species B (blue square). When looking for
King’s shortest paths [S.5.5.2.1] using the chemical species A to initiate the
search the central ring with 10 nodes is ignored. However amongthe solutions
of the analysis (with the initial nodes circled in green) other rings with 10 nodes
are found in the network.

We can see that this piece of network is characterized by a bond defect. An atom of the B
species appears to be over-coordinated by three atoms of theA species. When looking for
rings, using the King’s criterion [S.5.5.2.1] and initiating the search using the A atoms, the
central ring with 10 nodes is ignored. Nevertheless other rings with 10 nodes are found and
stored as solutions of the analysis. In order to find the central ring the search has to be initiated
from the overcoordinated B atom.
By analogy with the terminology ABAB this ring can be called a BABA ring. Indeed the alter-
nation of chemical species is well respected. Therefore it is legitimate to question the relevance
of the analysis without this result. In other words we have tocheck out if this BABA ring is, or
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not, an ABAB ring.
The properties of this ring meet the definition and can therefore improve the description of
the connectivity of the network. This kind of coordination defect [Fig. 5.24] is uncommon in
vitreous silica [29, 35], nevertheless it is frequent in chalcogenide glasses [36, 37].

5.5.5.2 Homopolar bonds

In amorphous materials the homopolar bond defects can have asignificant influence on the
ring statistics. This is true in particular for AB2 chalcogenide glasses. Figure [Fig.5.25]
illustrates standard cases that may be encountered when looking for rings in an AB2 system
which contains homopolar bonds.

Figure 5.25 Illustration of the influence of homopolar bonds in ABAB rings: in both examples
the smallest rings found when initiating the search using thecircled nodes (green
color) contain an homopolar bond A-A or B-B.

The smallest rings found when initiating the search using the circled nodes (green color) are
not ABAB rings. Therefore their size must be given using the total number of nodes. In figure
[Fig. 5.25] the smallest rings are a ring with 9 nodes and a ring with 11 nodes containing
respectively an A-A and a B-B homopolar bond. These rings are significantly smaller than the
shortest ABAB ring with 18 nodes that may be found when looking for rings using the same
green-circled nodes to initiate the analysis [Fig.5.25].

The I.S.A.A.C.S. program provides options to take into account or avoid A-B-A-B rings
as well as homopolar bonds.

5.5.6 Number of rings not found and that "potentially exist"

One of the first information it is possible to extract from ring statistics, except the number of
rings, is the number of rings not found by the analysis. Indeed calculation times do strongly
depend on the maximum search depth, ie. the maximum size of a ring. To carry out the analysis
this value has to be chosen to get the best possible compromise between CPU time and quality
of the description.
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67 5.5. Ring statistics

Nevertheless whatever this limiting value is, some rings ofa size bigger than the maximum
search depth may not be found by the analysis. In the King5.5.2.1and the Guttman’s criteria
5.5.2.2it is possible to evaluate the number of "potentially not found" rings or rings that "po-
tentially exist".
Thus for a given atomAt we can consider that a closed path exists and is not found:

1. If the atomAt has at least 2 nearest neighbors

2. If no closed path is found:

a- Starting from one neighbor to go back on the considered atom At (Guttman’s crite-
rion)

b- Between one couple of neighbors of the atomAt (King’s criterion)

3. If the 2 nearest neighbors of the atomAt have at least 2 nearest neighbors (to avoid non
bridging atoms)

Thus if during the analysis these 3 conditions are full filled(1, 2-a, 3 for the Guttman’s criterion,
and 1, 2-b, 3 for the King’s criterion) then we can say that this analysis has potentially missed
a ring between the neighbors of atomAt . The smaller this number of "potentially" missed
rings will be the better this analysis will be and the better the description of the connectivity of
the material studied will be. The term "potentially" has beenchosen because the method only
allows to avoid first neighbor non bridging atoms.

Following this method I.S.A.A.C.S. gives access to the number of rings that "potentially
exist" and not found during the analysis.
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5.6 Invariants of spherical harmonics as atomic order pa-
rameters

Invariants formed from bond spherical harmonics allow to obtain quantitative informations on
the local atomic symmetries in materials. The analysis starts by associating a set of spherical
harmonics with every bond linking an atom to its nearest neighbors. For a given bond defined
by a vector~r a spherical harmonic may be defined as:

Qlm(~r) = Ylm〈θ(~r),ψ(~r)〉 (5.28)

whereYlm(θ,ψ) is the spherical harmonic associated to the bond,θ and ψ are the angular
components of the spherical coordinates of the bond which cartesian coordinates are defined by
~r.

Because theQlm for a given l can be scrambled by changing to a rotated coordinate sys-
tem, it is important to consider rotational invariant combinations, such as [23, 38]:

Ql =

[

4π
2l +1

l

∑
m=−l

∣
∣Q̄lm

∣
∣2

]1/2

(5.29)

whereQ̄lm is defined by:
Q̄lm = 〈Qlm(~r)〉 (5.30)

and represents an average of theYlm(θ,ψ) over all~r vectors in the system whether these vectors
belong to the same atomic configuration or not. Just as the angular momentum quantum
number,l , is a characteristic quantity of the ’shape’ of an atomic orbital, the quantityQl is
a rotationally invariant characteristic value of the shape/symmetry of a given local atomic
configuration (if the average is not taken on all bonds of the system but only within a given
configuration) or an average of such values for a set of configurations. Thus it is possible to
compareQl ’s computed for well known crystal structures (e.g. FCC, HFC ...) and some local
atomic configurations in a material’s model. The results of the comparison gives information
for the presence/absence of a particular local atomic symmetry.

I.S.A.A.C.S. allows to compute the averageQl ’s for each chemical species as well as the
averageQl ’s for a user specified local atomic coordination.

5.7 Bond valence sums

The bond valence method (or bond valence sum) (not to be mistaken with the valence bond
theory in quantum chemistry) is a technique used in coordination chemistry to estimate the
oxidation/valence states of atoms.
The basic idea is that the valenceVi of an atomi is the sum of the individual bond valencesvi j
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of theNi surrounding atoms:

Vi =
Ni

∑
j=1

vi j (5.31)

The individual bond valencesvi j are calculated using:

vi j = e

(R0−Ri j
B

)

(5.32)

or

vi j =

(
Ri j

R0

)−N

(5.33)

Ri j is the computed bond length between atomsi and j, R0, B andN are tabulated [24–26].

I.S.A.A.C.S. allows to compute the average bond valence sumsfor each chemical species
as well as the average bond valence sums for a user specified local atomic coordination.

5.8 Mean square displacement of atoms

Atoms in solids, iquids and gases move constantly at any given temperature, i.e. they are sub-
ject to a "thermal" displacement from their average positions. This displacement is particularly
important in the case of a liquids. Atomic displacement doesnot follow a simple trajectory:
"collisions" with other atoms render atomic trajectories quite complex shaped in space.
The trajectory followed by an atom in a liquid resembles thatof a pedestrian random walk.
Mathematically this represents a sequence of steps done oneafter another where each step fol-
lows a random direction which does not depend on the one of theprevious step (Markov’s chain
of events).
In the case of a one-dimensional system (straight line) the displacement of the atom will there-
fore be either a forward step (+) or a backward step (-). Furthermore it will be impossible to
predict one or the other direction (forward or backward) since they have an equal probability to
occur.
One can conclude that the distance an atom may travel is closeto zero. Nevertheless if we
choose not to sum the displacements themselves (+/-) but thesquare of these displacements
then we will end up with a non-zero, positive quantity of the total squared distance traveled.
Consequently this allows to obtain a better evaluation of thereal (square) distance traveled by
an atom.
TheMeanSquareDisplacement MSD is defined by the relation:

MSD(t) = 〈r2(t)〉 =
〈
|r i(t)− r i(0)|2

〉
(5.34)

wherer i(t) is the position of the atomi at the timet, and the〉 〈 represent an average on the time
steps and/or the particles.
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However, during the analysis of the results of molecular dynamics simulations it is important to
subtract the drift of the center of mass of the simulation box:

MSD(t) =
〈

|r i(t)− r i(0)− [rcm(t)− rcm(0)]|2
〉

(5.35)

wherercm(t) represents the position of the center of mass of the system at the timet.
The MSD also contains information on the diffusion of atoms.If the system is solid (frozen)
then MSD "saturate", and the kinetic energy is not sufficient enough to reach a diffusive behav-
ior. Nevertheless if the system is not frozen (e.g. liquid) then the MSD will grow linearly in
time. In such a case it is possible to investigate the behavior of the system looking at the slope
of the MSD. The slope of the MSD or the so called diffusion constant D is defined by:

D = lim
t→∞

1
6t

〈r2(t)〉 (5.36)

I.S.A.A.C.S. provides access to the several MSD related functions:

• MSD for each chemical species with autocorrelation on all the dynamics

• MSD for each chemical species without autocorrelation on all the dynamics (step by step)

• Directional MSD (x, y, z, xy, xz, yz) for each chemical species with autocorrelation on
all the dynamics

• Directional MSD (x, y, z, xy, xz, yz) for each chemical species without autocorrelation
on all the dynamics (step by step)

• Drift of the center of mass (x, y, z)

• Correction applied to correct the drift of the center of mass in equation [Eq.5.35] (x, y,
z)

70



The chemical properties database in
I.S.A.A.C.S.

A database of chemical/physical properties is included in the I.S.A.A.C.S. program, this ap-
pendix presents these properties (atomic radii, x-ray and neutron scattering lengths) as well as
the references of the articles from which this information was obtained.
Note that the data presented in this appendix is available for download on the web sites of the
program:
http://isaacs.sourceforge.net/phys/chem.html
http://www.phy.cmich.edu/people/petkov/isaacs/phys/chem.html

A.1 Atomic radii

A.1.1 Covalent radii

Figure [Fig.A.1] illustrates the covalent radii used in I.S.A.A.C.S. see [39] for details.

A.1.2 Ionic radii

Figure [Fig.A.2] illustrates the ionic radii used in I.S.A.A.C.S. see [40] for details.

A.1.3 VDW radii

Figure [Fig.A.3] illustrates the Van Der Waals radii used in I.S.A.A.C.S. see[41] for details.

A.1.4 Shannon radii in crystal

Figure [Fig. A.4] illustrates the atomic radii in crystals as compiled by Shannon used in
I.S.A.A.C.S. see [42, 43] for details.
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Figure A.1 Covalent radii used in the I.S.A.A.C.S. program.
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Figure A.2 Ionic radii used in the I.S.A.A.C.S. program.
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Figure A.3 Van Der Waals radii used in the I.S.A.A.C.S. program.
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Figure A.4 Shannon radii in crystals used in the I.S.A.A.C.S. program.
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A.2 Neutron scattering lenghts
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Figure A.5 Neutron scattering lengths used in the I.S.A.A.C.S. program.

Figure [Fig.A.5] illustrates the neutron scattering lengths used in I.S.A.A.C.S. see [44, 45] for
details.
The atomic numbers are used for the x-ray scattering lengths.
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