
Chapter 2

Data Collection, Processing, and
Analysis

Reference: Philip R. Bevington, D. Keith Robinson: Data Reduction and Error Analysis
for the Physical Sciences, McGraw Hill, 2003, ISBN 0-07-247227-8

2.1 Error, Precision, Accuracy

It is natural for one to choose to make a single, careful measurement of a given parameter. By
selectively making a single measurement of each parameter in a given equation, one can plug
the numbers into an appropriate formula and calculate some end-parameter in question. This
approach may work well in most general applications; however, such procedure is generally
unacceptable in the laboratory. In science, high precision and a good estimate of the error,
or uncertainty in the determined value, is required. Therefore, multiple measurements of
each parameter must be made, multiple calculations of the end value are performed, and the
uncertainty in the end-parameter is determined by statistical methods. No result should
EVER be cited based on only a single measurement.

2.1.1 Error

Error is the difference between an observed or calculated value and the true value. Usually,
the “true” value is unknown (or else we would not be doing the experiment in the first
place). We may know approximately what it should be from earlier experiments or theoretical
predictions. Errors fall into three classes:

Illegitimate errors: These result from simple mistakes in reading an instrument, or blun-
ders in a calculation. These errors can be corrected by carefully repeating the opera-
tions.

Random errors are often beyond the control of the experimenter. Random errors cannot
be identified or estimated by a single measurement. The reason for such errors are
vast and often depend on the experimental setup and measuring devices. IF the errors
are truly random, the data points should be symmetrically distributed on either side
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(a) High precision, low accuracy. (b) Low precision, high accuracy

Figure 2.1: Precision versus accuracy.

of the actual value, as shown in Figure 2.2 on page 20. Using a sufficient number of
data points one can get a good estimation of the probable value using the statistical
methods outlined in this chapter.

Systematic errors consistently contribute to an overestimation or underestimation of the
values. The presence and magnitude of systematic errors can be difficult to detect if
the expected value is not known. Such errors may result from faulty calibration, poor
experimental technique, or other such reason. The experimenter must be very careful
and methodical to avoid the introduction of systematic errors.

2.1.2 Precision

Precision is a measure of the reproducibility of your measurements. Webster’s defines pre-
cision as exactness, but this definition needs to be refined for use in scientifice experiments.
We understand precision as a measure of how well the result has been determined, and how
reproducable it is.

2.1.3 Accuracy

The laboratory manual defines Accuracy as a measure of how closely the result agrees to
the “actual” value. This, of course, requires knowledge of what this “actual” value might
be. Webster’s considers Accuracy and Precision to be synonymous, and this is a common
point of confusion. Accuracy should be thought of more in terms of target shooting. If a
person hits the bullseye, we don’t naturally call the shot “precise”, we call it “accurate” or
“on target”. Either of these are equally legitimate, grammatically, but it is more natural to
refer to “good aim” with the term “accurate”. Such is the case here. It is entirely a matter
of semantics, but language must be understood to be useful. Results that are “close to the
mark” are considered “accurate;” therefore, Accuracy is determined by the difference
between the resultant value and the “accepted” value.. See Fig. 2.1 for a graphical
comparison between “precision” and “accuracy”.
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A quantitative measure can be made on the Accuracy of a given result. There are several
methods which are implemented, depending on the existence or absence of an “accepted
value” (what your lab manual calls actual value). These are given on page 22 by Equations
2.4.7 and 2.4.8, which are Percent Error and Percent Difference, respectively. Note that
the former, Percent Error, requires a theoretical or generally accepted value with which to
compare. Percent Difference is used to compare my results with yours & does not require
an “accepted value.”

2.2 Measurements and Least Measures

All laboratory equipment share two common factors: Units and Finite Resolution. Good
laboratory procedure mandates that all measurements are recorded to the precision
allowed by the instrument. Several points may be taken on reports where measurements
have been arbitrarily reduced in precision by sloppy work. The units of the measurements
should be properly recorded in the column where the data is collected. Using tables, and
collecting data in columns, reduces the amount of writing and allows for quick visual evalu-
ations of your data. Careful study of columns of data may reveal to your eye some pattern
in the behavior of the numbers. One column in a data collection table should be reserved for
each measurement; therefore, it is common that all numbers in a column possess the same
number of decimal places.

The Least Measure of the equipment, also known as minimum error for reasons which
will be covered shortly, is determined by the decimal places indicated on the equipment.
Your common meter stick, for example, can be read within half a millimeter; therefore, the
least measure of the meter stick is 0.05 cm and all readings with a meter stick should be
recorded to 2 decimal places when using the centimeter scale. The triple beam balance can
be interpolated to 1/100 gram, so the least measure of the triple beam balance is 0.01 g and
all readings with a triple beam balance should be recorded to 2 decimal places when using
units of grams.

2.3 Working with Significant Figures

A very important issue that arrises in the laboratory is the “significance” of the numbers.
Instruments always possess a finite degree of precision, and that precision is reflected in the
number of significant figures that are given for any measurement. All subsequent calculations
must accurately reflect the precision of the various numbers used to obtain that result, thus
procedures for handling significant figures are laid forth.

Suppose we want to calculate the value v = d/t where d is the distance measured with
a meter stick and t is the time measured with a digital stopwatch. The least measure of
the meter stick is 0.05 cm, and the least measure of the stopwatch is 0.001 s. Suppose we
measure the following:

d = 1.25 cm

t = 1.378 s
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We have the distance to 3 significant figures and the time to 4 significant figures. What
this means is the following: the distance traveled is 1.25 cm±0.05 cm over a time of 1.378 s±
0.001 s. In other words, we don’t know for sure that the distance is 1.25 cm, 1.30 cm, or
1.20 cm. For this reason, the 5 in the distance measurement is called the least significant
figure and is always assumed to be in error. Similarly the 8 in the time measurement is the
least significant figure. It, too, is assumed to be in error. The least significant figure is only
a best estimate of what this number should be, and that is the reason we cannot go further
with this measurement. If the 5 is wrong in the distance, is would be pointless to say what
is beyond that position.

When we take the velocity calculation v = d/t we get

v = 0.907111756
cm

s

from our calculator. Our meter stick and stop watch told us how accurate the base mea-
surements were, but we have no such guide here. Which decimal place is the limit of our
precision?

The product (or quotient) of two or more numbers has the same number of significant
figures as the number in the product (or quotient) which possesses the fewest number of
significant figures.

In our case, the distance had the fewest number of significant figures at 3, thus the
velocity must be rounded to 3 significant figures:

v = 0.907
cm

s

Sums and differences work quite differently. Before taking any sum or difference, the
numbers must all be written out to the same number of decimal places. Suppose we wanted
to take the following sum:

12.1352
1.123

112.10
2.0153

Although the first number has the most significant figures, the third number actually
dictates policy since it has the fewest decimal places. Before taking the sum, we must round
all numbers up to 2 decimal places.

12.14
1.12

112.10
2.02

127.38

Note the sum is 127.38 not the expected 127.37 that would be obtained by summing the
original data. This is not uncommon, and the two methods do in fact agree. Remember that
the least significant figure is always assumed to be in error. In other words, neither
of them are completely right, but they agree within error.

18

petko1vg
Text Box
4



Counting Significant Figures

In order to properly track significant figures through calculations, you must first be able
to determine which numbers are significant in your measurements and which are not. The
following rules apply to all measurements:

� All non-zero numbers in a measurement ARE significant.

� Zeroes to the left of non-zero numbers are NOT significant.

� Zeroes to the right of non-zero numbers ARE significant.

For example:

measurement # sig-figs
12.14 4
01.12 3
0.10 2
2.02 3

127.380 6

That leaves only one final point. Suppose the following number is recorded:

500

This number could have 1, 2, or 3 significant figures. There really is no way of knowing;
therefore, this method of writing such numbers is considered ambiguous and bad form. If
a number such as this MUST be written, scientific notation is preferred:

5.0× 102

which makes it absolutely clear that there are 2, not 1 or 3, significant figures in this mea-
surement.

2.4 Error Analysis

2.4.1 Gaussian Distribution

When measurements of a single parameter are made repeatedly, the result will very likely
have a distribution as shown in Figure 2.2. This bell-shaped curve is called the normal,
or Gaussian, distribution. It describes the probability of obtaining a particular measured
value. If one assumes that the error is truly random, then for a large set of measurements the
frequency is likely distributed evenly on either side of the actual value; therefore, the actual
value will likely be near the center of the distribution, or the mean value of the distribution.
It follows that the mean value is the best estimate of the measured parameter and will be
treated as the determined value of the parameter.
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Figure 2.2: A typical distribution arising from random errors.

2.4.2 Mean and Standard Deviation

When multiple measurements are made of a single parameter, the set of data collected is
referred to as the sample data, or simply the sample. The number of points in the sample
is referred to as the sample size N . Consider a set of 6 measurements of a length yielding
the results x1 = 2.15, x2 = 2.12, x3 = 1.96, x4 = 2.22, x5 = 2.06, and x6 = 2.09, all in
millimeters. These might represent measurements with a micrometer gauge whose minimum
length resolution is 0.01 mm. Since the random errors are larger than the length resolution,
we adopt the following definition: The “best value” of the measurements is the arithmetic
mean and is calculated as

x̄ =
2.15 + 2.12 + 1.96 + 2.22 + 2.06 + 2.09

6
mm = 2.10 mm .

(Sometimes, the notation 〈x〉 is used instead of x̄.) This can be represented in a symbolic
way as

x̄ =
1

N
(x1 + x2 + x3 + x4 + x5 + x6)

=
1

N

N∑
i=1

xi , (2.4.1)

where the symbol
∑

represents a sum. Next, we define the deviation di of each value from
the mean by

di = xi − x̄ ,
where x̄ is the mean value from Eq. (2.4.1). Some of these deviations are positive, and some
are negative. It can easily be shown that the average deviation, defined by

d̄ =
1

N

N∑
i=1

di , (2.4.2)
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is zero. Of more use is the root-mean-square (rms) deviation σ. To estimate σ, we
square each deviation di (remember that squares are always ≥ 0), add them together, divide
by N − 1, and take the square root:

σx =

√√√√ 1

N − 1

N∑
i=1

d2
i . (2.4.3)

In the above example, the individual deviations are d1 = 0.05, d2 = 0.02, d3 = −0.14,
d4 = 0.12, d5 = −0.04, and d6 = −0.01, all in millimeters. Hence,

σx =

√
1

6− 1
[0.052 + 0.022 + (−0.14)2 + 0.122 + (−0.04)2 + (−0.01)2] mm

= 0.0879 mm .

σx tells us how much “scatter” we have in our experiment, i. e. by how much a typical
measurement deviates from the mean x̄. From the formula one can easily see that the
standard deviation has the same units as the data. Not only that, but the standard deviation
of a column of data should be represented to the same number of significant figures
as the data in the column.

How good an estimate is our calculated mean value x̄ to the (unknown) true value xtrue?
To find out, we’d have to do the above experiment (take 6 time measurements and calculate
x̄) over and over again. Each experiment would yield a slightly different x̄, but we expect
them to scatter around xtrue. The statistical quantity used to describe the precision of a set
of measurements is the standard deviation of the mean:

σx,m =
σx√
N

(2.4.4)

=

√√√√ 1

N(N − 1)

N∑
i=1

d2
i .

We can decrease σx,m (and hence increase our precision) simply by increasing the number
of measurements N . However, as N enters into Eq. (2.4.5) with its square root, we need
four times the amount of data to cut σx,m in half. Often, this sets a practical limit as to
how precise we can measure. In our example with N = 6 and σx = 0.0879 mm, we obtain
σx,m = 0.0359 mm.

A more rigorous treatment would further show us that the probability of the true value
lying in the range

x̄± σx,m is 68.3%

x̄± 2σx,m is 95.4%

x̄± 3σx,m is 99.7%

Frequently, the standard error or uncertainty δx is taken as twice the standard deviation of
the mean:

δx = 2σx,m =
2σx√
N

(2.4.5)
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The result of our measurement should then be reported in the standard form as

x = x̄± δx . (2.4.6)

In the above example, this would be

x = 2.10 mm± 0.07 mm

or
x = (2.10± 0.07) mm .

It is ok to use 1σ- or 3σ-uncertainties (i. e., δx = σx,m or δx = 3σx,m), as long as this is clearly
stated in the lab report. In this lab, however, we prefer to use the 2σ uncertainties.

2.4.3 Significant Figures and Instrument Resolution

As we have seen, the expression of σ, and thus δx, yields only an approximate value based
on a finite sampling of experimental values. It follows, therefore, that only one or at most
two1 significant figures should be retained in expressions for σ and δx. Since δx indicates
the range of validity for the mean x̄, we will round off x̄ to the same number of decimal
places as contained in the rounded δx. Some examples will help to illustrate this rule:

x̄ = 47.265
δx = 4.302

}
x = 47± 4

x̄ = 0.07153
δx = 0.00048

}
x = 0.0715± 0.0005

x̄ = 2.1738
δx = 0.0129

}
x = 2.174± 0.013

x̄ = 5726.4
δx = 121.2

}
x = (5.73± 0.12)× 103

2.4.4 Comparing your Results

There are three circumstances that you can face as an experimenter: (1) you have an accepted
value for your determined quantity, (2) you have some other determined value to compare
against, or (3) you have nothing but your own data to consider. Results can be considered
or compared for each of these three cases as follows.

Percent Error

The easiest (but extremely rare) situation is when you have an accepted value (there are
very few “known” values) with which you can compare. This estimation of your accuracy is
called percent error and is calculated using

Percent Error =
|determined value− accepted value|

acceptedvalue
× 100% (2.4.7)

1Rule: if the first non-zero number of δx is 1, round to 2 significant figures; otherwise round to one figure.
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Percent Difference

When you do not have an accepted value, but you do have another determined value to
compare against (perhaps from another research group) you can estimate your accuracy
using a percent difference calculation.

Percent Difference =
|first value− second value|

(first value + second value)/2
× 100% (2.4.8)

Internal Comparison

The worst case is when you have neither an accepted value nor another determined value to
compare against. In this case you can do an estimate of your accuracy using the uncertainty,
δx, and your mean, x̄. This is similar to the Percent Error calculation of Eq. (2.4.7).

Relative Error εx =
δx

x̄
(2.4.9)

Relative Percent Error =
δx

x̄
× 100% = εx × 100% (2.4.10)

We will use the relative error in the next section on error propagation.

2.4.5 Error Propagation

Often an experiment requires the measurement of two or more quantities which are then
used to calculate the value of something else. If we know the uncertainties in the measured
quantities, what is the uncertainty in the calculated quantity. There are two approaches:

1. The “Tabular Method”, which is straightforward, but often requires a significant
amount of calculations.

2. The “Calculus Method”, which requires far fewer calculations, but involves some
language of calculus, which may be unfamiliar to you. Don’t let this bother you. You
will become familiar with this language as the semester progresses. In the meantime,
the examples given in this manual should get you started.

Tabular Method

In the “Tabular Method”, data is collected in the columns of tables. Calculations are done
row by row using a complete set of unique measurements each time, and the error estimates
and analysis are done on the completed columns, sometimes hundreds or thousands of entries
in length. Perhaps 500 measurements are taken of each of 20 physical quantities. From this,
analysis is done to calculate 500 results, and error analysis is then carried out on those 500
results. This allows the errors to “propagate” normally through the calculations, and we
evaluate that error based on the statistical distribution at the end.
Example: the volume of a cylinder is given by

V =
πd2h

4
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Table 2.1: Sample data collection and analysis for a right cylinder’s volume.

d (cm) h (cm) V (cm3)
2.31 3.77 63.2
2.32 3.98 67.3
2.18 3.92 58.5
2.31 3.77 63.2
2.32 3.80 64.2
2.18 3.92 58.5
2.31 3.77 63.2
2.32 3.98 67.3
2.18 3.92 58.5
2.28 3.76 61.4

Table 2.2: Mean, standard deviation and 2σ uncertainty of the Cylinder Measurements and
Volume Calculations.

d(cm) h (cm) V (cm3)
Average 2.27 3.86 62.5
St. Dev. 0.0638 0.0928 3.32
2σ Uncertainty 0.128 0.186 6.64

If we were to measure a cylinder, such as a graduated cylinder or pipet, we might measure
the diameter, d, ten times. We would similarly measure the length, h, ten times (the same
number must be made for each measured quantity, as you will see in a moment). We would
then calculate one volume, V , for each pair d and h. That gives ten volumes, as shown
in Table 2.1. We would calculate the Mean and Standard Deviation for both d, h, and V
directly from the table of values, as shown in Table 2.2. Our final result would then be
written in the standard form shown in Equation 2.4.6:

d = 2.27 cm ± 0.06 cm

h = 3.86 cm ± 0.09 cm

V = 62 cm3 ± 3 cm3

Calculus Method

There are times when the Tabular Method is inconvenient due to the large number of cal-
culations. Fortunately, a little calculus shows us a much faster method of calculating the
uncertainties of derived quantities. Suppose we have measured quantities A, B, C, etc., and
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Table 2.3: Error propagation for some common mathematical operations. Some of the results
use the relative error, defined as εQ = δQ/Q̄ in Eq. (2.4.9).

1. Addition and/or Subtraction: Q = A±B ± C
δQ =

√
(δA)2 + (δB)2 + (δC)2

2. Multiplication: Q = ABC

εQ =
√

(εA)2 + (εB)2 + (εC)2 or
δQ

Q̄
=

√(
δA

Ā

)2

+

(
δB

B̄

)2

+

(
δC

C̄

)2

3. Division: Q = A/B

εQ =
√

(εA)2 + (εB)2 or
δQ

Q̄
=

√(
δA

Ā

)2

+

(
δB

B̄

)2

4. Raising to a Power: Q = kAn,
where k and n are numbers with no uncertainty.

εQ = nεA or
δQ

Q̄
= n

δA

Ā

5. Exponential Function: Q = keA,
where k is a number with no uncertainty, and e = 2.718 . . . is the Euler’s number, the
base of natural logarithms.

δQ

Q̄
= δA

6. Natural Logarithm: Q = lnA

δQ =
δA

Ā

associated uncertainties δA, δB, δC, etc. Furthermore, we wish to calculate the uncertainty
in a quantity Q which is a function of A, B, C, etc., namely Q = Q(A,B,C, . . .). This
uncertainty in Q is given by

δQ =

√(
∂Q

∂A
δA

)2

+

(
∂Q

∂B
δB

)2

+

(
∂Q

∂C
δC

)2

+ . . . (2.4.11)

The symbol (∂Q/∂A) is called the partial derivative of Q with respect to A, and is
a measure of how Q changes as A is changed with everything else in the expression held
constant. Table 2.3 lists the results for some common functions Q. Given below are some
examples for which you should work out the arithmetic yourself. Notice that the results are
given in a form which is properly rounded off.

� Q = A+B, where A = 78± 4 and B = 14± 3.
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Then δQ =
√

42 + 32 = 5, and Q = 92± 5.

� Q = B − A, where B = 116± 12 and A = 94± 5.
Then δQ =

√
122 + 52 = 13, and Q = 22± 13.

� Q = AB, where A = 30± 2 and B = 4.00± 0.10.

Then εQ =
δQ

Q̄
=

√(
2

30

)2

+

(
0.1

4.0

)2

= 0.071, and Q = 120± 9.

� Q = B/C, where B = 748± 6 and C = 2.73± 0.04.

Then εQ =
δQ

Q̄
=

√(
6

748

)2

+

(
0.04

2.73

)2

= 0.017, and Q = 274± 5.

� Q = 3A2, where A = 50.4± 0.5.

Then
δQ

Q̄
= 2

(
0.5

50.4

)
= 0.0198, and Q = (7.62± 0.15)× 103.

� Q = A(B − C), where A = 5.3± 0.2, B = 10.2± 0.8 and C = 2.1± 0.5.
Here, we need to apply propagation rules for addition (rule #1 in Tab. 2.3) and
multiplication (rule #2). We first calculate the error for the differenceD = B−C = 8.1:
δD =

√
(δB2) + (δC)2 =

√
0.82 + 0.52 = 0.94.

Next, we calculate
δQ

Q̄
=

√(
0.2

5.3

)2

+

(
0.94

8.1

)2

= 0.122. Then, Q = 43± 5.

� Q = AeB, where A = 1.0± 0.3 and B = 3.0± 0.2.
Here, we need to apply error propagation rules for multiplication (rule #2) and expo-
nentiation (rule # 5).

Then
δQ

Q̄
=

√(
0.3

1.0

)2

+ 0.22 = 0.36, and Q = 20± 7.
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