Jordan Watts' Homepage

Student Research

The weighted projective space CP(2,3); made with Mathematica 11.
The weighted projective space <b>CP</b>(2,3); made with Mathematica 11.

Undergraduate Research

Student research projects in mathematics are a great way for young mathematicians working toward their bachelor degrees to experience what real research in mathematics is like, and gives opportunities for interaction with faculty outside of the classroom setting.

If you are a junior or senior math major and interested in a project with me in the area of topology/geometry, or topological applications to data, please contact me.

Past Projects

Summer 2016 - Invariants of Quotients by Circle Actions

My paper "The differential structure of an orbifold" shows that the underlying (local) semi-algebraic variety of an orbifold, equipped with its ring of smooth functions, contains a complete set of invariants of the orbifold; that is, an entire orbifold atlas can be reconstructed from the variety with its differential structure. Can something similar be done for spaces that (locally) are quotients of manifolds by circle actions? If the differential structure is not sufficient, what other pieces of information are required? This was an REU project with three undergraduate students (Natalie Downey, Lucas Goad, and Michael Mahoney) and one graduate student (Suzanne Craig). The results have appeared in a paper in the undergraduate research journal, Involve.

Spring 2015 - Evolution of Curves and Surfaces

A recent project that I have been interested in is using the power of Mathematica to explore evolutionary techniques for (so-far simple) optimisation problems. This was a project under the umbrella of the Illinois Geometry Lab in Spring 2015, with students Roger Burt, Yingqiu Huang, and Michael Schirle, along with graduate student assistant Brian Collier.