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Why Morita Equivalence?

Recall the non-trivial irreducible real representations of
Z/5:

Z/5× C→ C :
(
e2πik/5, z

)
7→ e2πiαk/5 · z

where k ∈ {0, 1, 2, 3, 4} and the weight α is 1 or 2.

These representations (or linear actions) are not
isomorphic. In fact, there is no equivariant diffeomorphism
between them.

However, as a geometer, I care about the symmetry arising
in this situation, and not so much the “speed” at which the
symmetry is being produced. So, these two
representations should be “equivalent” in some sense.

This is precisely the Morita equivalence that is the partial
topic of this talk.
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Setting

Definition
Let G = (G1 ⇒ G0) be a Lie groupoid:

1 a small category in which all arrows are invertible;
2 the set of objects G0 is a smooth manifold;
3 the set of arrows G1 is a smooth manifold;
4 the structure maps are all smooth: source s, target t, unit

u, multiplication m, and inverse inv;
5 and the source and target are also required to be

submersions.

Example
The action of a Lie group G on a manifold M (called a
G-manifold) induces a Lie groupoid, GnM , called the action
groupoid:

G×M ⇒ M.
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Setting

Definition
A morphism of Lie groupoids F : G → H is a smooth functor

G1

����

F1 // H1

����
G0

F0

// H0;

that is, a functor in which the map between objects and the
map between arrows are both smooth.
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Setting

Example
Given a Lie group homomorphism ϕ : G→ H, an equivariant
map f : M → N from a G-manifold M to an H-manifold N ,

i.e. f(g · x) = ϕ(g) · f(x),

induces a functor

(g, x) 7→ (ϕ(g), f(x)).

We call such a functor between action groupoids an
equivariant functor.
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Setting

Definition
A 2-morphism/2-arrow η : F1 ⇒ F2 is a smooth natural
transformation

G

F1

((

F2

66⇓ η H

smoothly sending an object x ∈ G0 to an arrow ηx ∈ H1 in a
natural way.
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Setting

Example
Given a smooth homotopy H : M × I → N between smooth
maps f0, f1 : M → N , there is a corresponding natural
transformation between the induced functors between
fundamental groupoids:

Π1M

Π1f0
**

Π1f1

44⇓ Π1H Π1N.
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Drawback

Groupoids are categories, and one can have a smooth
functor that is an equivalence of categories that is not
(smoothly) invertible.

Example

Squaring z 7→ z2 induces a functor between our two
representations of Z/5 of weights 1 and 2, restricted to Cr {0},
that is surjective on objects and fully faithful on arrows.
However, squaring does not admit a global smooth (or even
continuous) inverse.
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Weak Equivalences

Definition

A weak equivalence ϕ : G '−→ H is a smooth functor that
satisfies

1 (Smooth Essential Surjectivity)
Ψϕ : G0ϕ×tH1 → H0 : (x, h) 7→ s(h) is a surjective
submersion,

2 (Smooth Fully Faithfulness)
Φϕ : G1 → G2

0ϕ2×(s,t)H1 : g 7→ (s(g), t(g), ϕ(g)) is a
diffeomorphism.

Example
The action groupoid of any principal G-bundle over a manifold
M is weakly equivalent to M .
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Question

How do we (formally) invert these weak equivalences?
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Bicategory of Fractions - Pronk [P96]

Let W be the class of all weak equivalences in the
2-category LieGpoid.

Define a bicategory LieGpoid[W−1], the bicategory of
fractions, as follows:

0 Objects are Lie groupoids.

1 A 1-cell from G to H is a generalised morphism:

K
ϕ

'
��

ψ

��
G H

A generalised morphism is a Morita equivalence if both
functors are weak equivalences.
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Bicategory of Fractions - Pronk [P96]

2 A 2-cell between two generalised morphisms is an
equivalence class of 2-commutative diagrams

K
ϕ

'
vv

ψ

((G ⇓ S L

α '

OO

α′ '
��

⇓ T H

K′
ϕ′
'

hh

ψ′

66

The equivalence relation is given by yet another
generalised morphism between the centres of the
diagrams, and some identities involving the natural
transformations. (See Pronk [P96] details.)
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Example: Open Covers

Example
Let M be a manifold.
Let {Uα} and {Vβ} be two open covers of M . Define

U0 :=
∐

Uα,

V0 :=
∐

Vβ.

Let

U1 :=
∐

Uα ∩ Uα′ ,

V1 :=
∐

Vβ ∩ Vβ′ .

U and V are so-called Čech groupoids of M .
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Example: Open Covers

Example

If {Wγ} is a refinement of the two open covers, then we
construct a Čech groupoidW similarly.
We have the generalised morphism

W
'

~~

'

  
U V

where the two functors are inclusions.
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Example: Effective Orbifold

Example
Through the work of Moerdijk and Pronk [MP97], we can
do a similar procedure with orbifolds atlases:
Two orbifold atlases (viewed as Lie groupoids) A and B are
equivalent if their charts are all compatible, leading to a
larger orbifold atlas.
More precisely, if there is another orbifold atlas C and a
Morita equivalence

C
'

��

'

��
A B

then the orbifold altases are equivalent; they describe the
same orbifold.
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Example: Spanisation

Example
Let ϕ : G → H be a functor. There is a corresponding
generalised morphism:

G
ϕ

��
G H

called the spanisation of ϕ.
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Example: Spanisation

Example
Let ψ : G → H be another functor, and S : ϕ⇒ ψ a natural
transformation.
The spanisation of S is given by the 2-cell represented by
the diagram

G
ϕ

((G � G ⇓ S H

G.
ψ

66
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LieGpoid[W−1]

Theorem
The bicategory whose objects are Lie groupoids, 1-cells are
generalised morphisms, and 2-cells are as described above,
denoted LieGpoid[W−1], admits an inclusion pseudofunctor
S : LieGpoid→ LieGpoid[W−1] given by spanisation, and
admits a pseudo-inverse for every weak equivalence ϕ ∈W .

The following generalised morphisms are pseudo-inverses
of each other:

K
ϕ

'
��

ψ

' ��

K
ψ

'��

ϕ

'   
G H H G.
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Exercise!

Exercise
Show that any two non-trivial irreducible real representations of
Z/5 yield Morita equivalent Lie groupoids. (Better yet, do this
for Z/p for prime p.)
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Goal

Let G and H be Lie groups. We want to show that any
generalised morphism between action groupoids GnM
and H nN admits a 2-arrow to a generalised morphism
made up of equivariant functors.
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History

Pronk and Scull prove this for action groupoids that are
orbifolds [PS10]. They use this to prove a decomposition
theorem, and use this to go on and prove some
Morita-invariance results for theories like K-theory and
Bredon cohomology.
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Results
Theorem (Farsi-Scull-W.)
Let GnM and H nN satisfy any subset of the following
properties:{

compact, effective, free, locally free, transitive,
proper, discrete, is an orbifold groupoid

}
.

Let
GnM '←− K −→ H nN

be a generalised morphism. Then there exist a second
generalised morphism

GnM '←−
ϕ

Gn LoH −→
ψ

H nN

in which ϕ and ψ are equivariant functors, and a 2-arrow
between the two generalised morphisms.
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Results

Theorem (Farsi-Scull-W.)
Let GnM and H nN satisfy any subset of the following
properties:{

compact, free, locally free, transitive,
proper, discrete, is an orbifold groupoid

}
.

Let ϕ : GnM '−→ H nN be a weak equivalence. Then there
exist equivariant weak equivalences

π : GnM '−→ K�
GnK�

M

and
i : K�

GnK�
M '−→ H nN

where K E G acts freely on M , and a 2-arrow ϕ⇒ i ◦ π.
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Corollary

Combining the previous two theorems allows us, when
working with action groupoids, to restrict completely to the
equivariant setting, and to decompose the corresponding
weak equivalences into equivariant weak equivalences
induced by epimorphisms and monomorphisms.

This will allow us to generalise the work of Pronk-Scull
from representable orbifolds to action groupoids satisfying
any of the properties listed previously.
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Bibundles

Definition
A right principal bibundle from G to H is a right principal
H-bundle aL : P → G0 with anchor map aR : P → H0 equipped
with a G-action with anchor map aL that commutes with the
H-action, and so that aR is G-invariant.

G1

����

P

aL�� aR   

H1

����
G0 H0

If aR is a left principal G-bundle as well, then P is also
called a Morita equivalence.
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Bibundles

We form a bicategory LieBiBund with 2-cells as follows:
given bibundles P and Q between G and H, a 2-cell is a
(G-H)-biequivariant diffeomorphism between P and Q.

Theorem (Hilsum-Skandalis HS[87])
The bicategory whose objects are Lie groupoids, 1-cells are
right principal bibundles, and 2-cells are bi-equivariant
diffeomorphisms, denoted LieBiBund, admits an inclusion
functor B : LieGpoid→ LieBiBund (called “bibundlisation”),
and admits a pseudo-inverse for every weak equivalence
ϕ ∈W .
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Equivalence of Bicategories

Theorem (continued - PS[96])
Moreover, we have the following 2-commutative diagram

LieGpoid[W−1]

⇒

' // LieBiBund

LieGpoid.

S

OO

B

>>

Jordan Watts CMS 2023 Summer Meeting, Ottawa



Construction: Generalised Morphism to Bibundle

K
ϕ

'
��

ψ

��
G H
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Construction: Generalised Morphism to Bibundle

G K
ϕ

'
��

ψ

��

H

G G H H
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Construction: Generalised Morphism to Bibundle

GidG

w

×ϕK
pr1
'

}}}}

pr3
'

!! !!

Kψ
w

×idH
H

pr1
'

||||

pr3

""
G ⇒

pr2
K

ϕ

'
||

ψ

##

⇒
pr2

H

G G H H
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Construction: Generalised Morphism to Bibundle

L̃
pr1
'||||

pr2
' ## ##

GidG

w

×ϕK
pr1
'

}}}}

pr3
'

!! !!

� Kψ
w

×idH
H

pr1
'

||||

pr3

""
G ⇒

pr2
K

ϕ

'
||

ψ

##

⇒
pr2

H

G G H H

where L̃ = (GidG

w

×ϕK)pr3
×pr1

(Kψ
w

×idH
H).
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Construction: Generalised Morphism to Bibundle

L̃ comes equipped with a left and a right K-action. Let
L := K\L̃/K.

L
χ

'||||
ω

' ## ##

GidG

w

×ϕK
pr1
'

||||

Kψ
w

×idH
H

pr3

##
G H

G H

L is isomorphic as a groupoid to the action groupoid of a
bibundle from G to H.
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Thank you!
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