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Setup

(M,ω)

(M,ω) - a connected symplectic manifold,
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Setup

(M,ω)

π

��

Φ // g∗

M/G

G - a compact Lie group acting in a Hamiltonian fashion on
M with (equivariant) momentum map Φ,
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Setup

Z

�

i //

πZ
��

(M,ω)

π

��

Φ // g∗

M//0G j
//M/G

Z - the level set Φ−1(0).

If 0 is a regular value of Φ, then Z is a closed submanifold
of M on which G acts locally freely.

In this case, M//0G is a symplectic orbifold.
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Setup

Z

�

i //

πZ
��

(M,ω)

π

��

Φ // g∗

M//0G j
//M/G

If 0 is a critical value of Φ, then Z is a (closed) Whitney
stratified subspace of M on which G acts.

In this case, M//0G is a symplectic stratified space [SjL91].
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Orbit-Type Stratifications

M(H) := {x ∈M | Stab(x) is conjugate to H}

Together, the connected components of each (non-empty)
M(H) form a Whitney stratification, called the orbit-type
stratification on M .

This induces a Whitney stratification on M/G whose strata
are given by connected components of each (non-empty)
(M/G)(H) := π(M(H)), also called the orbit-type
stratification on M/G.
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Orbit-Type Stratifications

Also induced is a Whitney stratification on Z whose strata
are given by connected components of each (non-empty)
Z(H) := Z ∩M(H), also called the orbit-type stratification
on Z.

This, in turn, induces a Whitney stratification on
Z/G =: M//0G whose strata are given by connected
components of each (non-empty) (Z/G)(H) := πZ(Z(H)),
also called the orbit-type stratification on M//0G.

Each stratum of the orbit-type stratification on M//0G is a
symplectic manifold, with each symplectic structure
induced by one global Poisson structure on M//0G.
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Sjamaar Forms

Let Zprin and (M//0G)prin be the principal strata of the
orbit-type stratifications on Z and M//0G, resp., which are
open and dense in Z and M//0G, resp.

Denote by I and J the inclusions Zprin ↪→ Z and
(M//0G)prin ↪→M//0G, resp.

Denote by πprin the restriction π|Zprin .

Zprin

�

I //

πprin

��

Z

�

i //

πZ
��

(M,ω)

π

��

Φ // g∗

(M//0G)prin
J

//M//0G j
//M/G
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Sjamaar Forms

Definition ([Sj05])

A Sjamaar k-form σ on M//0G is a k-form on (M//0G)prin for
which there exists α̃ ∈ Ωk(M) satisfying (i ◦ I)∗α̃ = π∗prinσ.

Without loss of generality, we may assume α̃ is G-invariant.

Obtain a de Rham complex (Ω•Sj(M//0G), d).

Obtain an associated Poincaré Lemma, Stokes’ Theorem,
and a de Rham Theorem.
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Sjamaar Forms

Question
Is (Ω•Sj(M//0G), d) intrinsic? That is, is it independent of how
we obtain M//0G? (For instance, if doing reduction in stages,
there are multiple ways of presenting the symplectic quotient,
all of which are “symplectomorphic”.)

If we could show that (Ω•Sj(M//0G), d) ∼= (Ω•(M//0G), d),
where the latter is the diffeological de Rham complex, then
the answer would be “yes”.
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Diffeology

Definition
Let X be a set. A parametrisation p : Up → X is a map from
an open subset Up of some Rn (n is not fixed). A diffeology
DX on X is a family of parametrisations satisfying

1 all constant parametrisations are in DX ,
2 if p is a parametrisation and {Uα} an open cover of Up

such that for each α

p|Uα ∈ DX

then p ∈ DX ,
3 if p ∈ DX and f : V → Up smooth with V an open subset of

some Rn then p ◦ f ∈ DX .
Call (X,DX) a diffeological space and each p ∈ DX a plot.
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Diffeology

Definition
A map F : (X,DX)→ (Y,DY ) is diffeologically smooth if
F ◦ p ∈ DY for every p ∈ DX .

Obtain a “complete, co-complete quasi-topos” [BH11]. In
particular, we obtain a category admitting all subsets,
quotients, products, coproducts, and function spaces.
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Diffeology

Definition
A diffeological k-form η on (X,DX) is an assignment to
each p ∈ DX a k-form ηp ∈ Ωk(Up) such that for any
f : V → Up smooth with V an open subset of some Rn,

ηp◦f = f∗ηp.

Given a diffeological from η, define dη to be the
assignment p 7→ dηp.

Obtain a de Rham complex (Ω•(X), d).
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Examples

Example
Given a smooth manifold, it has a natural diffeology consisting
of all smooth maps into it from open subsets of cartesian
spaces. The diffeological de Rham complex is (isomorphic to)
the standard one.

Example ([KW16], [W12] for compact case)
If G �M is a proper Lie group action, then

π∗ : (Ω•(M/G), d)→ (Ω•basic(M), d)

is an isomorphism. (In fact, a diffeomorphism.)
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Examples

Example ([W22] ([W13?]))
Let G1 ⇒ G0 be a proper Lie groupoid. Then

π∗ : (Ω•(G0/G1), d)→ (Ω•basic(M), d)

is an isomorphism. (In fact, a diffeomorphism.) Here, π is the
quotient map to the orbit space, and µ ∈ Ωk(G0) is basic if
s∗µ = t∗µ. (Definition due to Eugene Lerman.)
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Examples

Example ([M22])
If F is a foliation on a manifold M which is regular, or singular
but whose leaves of the same dimension assemble into
diffeological submanifolds of M , then (Ω•(M/F), d) is similarly
isomorphic to (Ω•basic(M), d). Here, µ ∈ Ωk(M) is basic if for
every local section X of the distribution associated to F ,

Xyµ = 0 and £Xµ = 0.
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Hamiltonian Action Case

Zprin

�

I //

πprin

��

Z

�

i //

πZ
��

(M,ω)

π

��

Φ // g∗

(M//0G)prin
J

//M//0G j
//M/G

The goal is to show that
J∗ : (Ω•(M//0G), d)→ (Ω•Sj(M//0G), d) is a (well-defined)
isomorphism.

Proposition ([W12])
If 0 is a regular value of Φ, then J∗ is a (well-defined)
isomorphism.
If 0 is a critical value of Φ, then
(Ω•Sj(M//0G), d) ⊆ J∗(Ω•(M//0G), d)).
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ

J
//M//0G j

//M/G

If σ is a Sjamaar form,
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ

J
//M//0G j

//M/G

If σ is a Sjamaar form, then there exists a G-invariant α̃ on
M such that (i ◦ I)∗(α̃) = π∗prinσ.
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

i∗α̃
Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ

J
//M//0G

β
j
//M/G

If σ is a Sjamaar form, then there exists a G-invariant α̃ on
M such that (i ◦ I)∗(α̃) = π∗prinσ.

If 0 is a regular value, then since being horizontal is a
closed condition, i∗α is a basic form on Z. Obtain a form β
on M//0G such that J∗β = σ.

Jordan Watts Workshop on Lie Groups, Sing. Spaces, & Higher Struct.



Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

i∗α̃
Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ

J
//M//0G

β
j
//M/G

If 0 is a critical value, then we can use the local finiteness
of the stratification on Z, as well as the fact that α̃ restricts
to a basic form on each stratum of Z [Sj05], to obtain the
second statement of the proposition.
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G j

//M/G

If σ = 0 and 0 ∈ g∗ is a regular value of Φ,
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃=0

Zprin

�

I //

πprin

��

i∗α̃=0
Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G

β=0
j
//M/G

If σ = 0 and 0 ∈ g∗ is a regular value of Φ, then i∗α = 0
since Zprin is open and dense in Z.

π∗Z is injective, and so β = 0. Thus J∗ is injective.
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃=0

Zprin

�

I //

πprin

��

???
Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G j

//M/G

If 0 is a critical value of Φ, then the continuity argument
going from Zprin to Z no longer is clear.

In particular, the relationship between tangent vectors and
differential forms has yet to be explored in the diffeological
world. Work by Christensen-Wu [CW16,CW22] in recent
years may be a starting point.
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

i∗α=0
Z

�

i //

πZ

��

α̃

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G

β
j
//M/G

If β is a form on M//0G, then to obtain that J∗β is Sjamaar,
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

π∗
Zβ

Z

�

i //

πZ

��

α̃?

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G

β
j
//M/G

If β is a form on M//0G, then to obtain that J∗β is Sjamaar,
we require π∗Zβ to extend to some form α̃ on M .

If 0 ∈ g is a regular value, then Z is a closed submanifold,
and so this occurs.
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Idea of Proof

π∗prinσ
=(i◦I)∗α̃
Zprin

�

I //

πprin

��

π∗
Zβ

Z

�

i //

πZ

��

α̃?

(M,ω)

π

��

Φ // g∗

(M//0G)prin
σ=0

J
//M//0G

β
j
//M/G

If 0 ∈ g is a critical value, then we are left with an extension
problem. (We also still need to understand the relationship
between tangent vectors and forms in the diffeological
world.)
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An Example

Example

Suppose G = S1 acts on M = C2 ∼= R4 linearly with
weights ±1, and

Φ(z1, z2) = |z2|2 − |z1|2.

Then Z is a quadratic cone over a torus (homeomorphic to
(T2 × [0, 1])/(T2 × {0})).
In the case of 0-forms, the extension problem becomes:
does every diffeologically smooth function f : Z → R
extend to a smooth function on M?

This extension problems brings us to another facet of my
research.
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Sikorski Structures

Definition
Let X be a set. A Sikorski structure on X is a family of
R-valued functions FX such that

1 if f1, . . . , fn ∈ FX and g ∈ C∞(Rn), then
g(f1, . . . , fn) ∈ FX ;

2 if given f : X → R there is an open cover {Uα} of X and
for each α there exists gα ∈ FX such that

f |Uα = gα|Uα ,

then f ∈ FX . (This is with respect to the initial topology on
X induced by FX .)

(X,FX) is called a Sikorski space.
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Examples

Examples
Any smooth manifold M has a natural Sikorski structure:
C∞(M).
Any subset Z of a Sikorski space (X,FX) has a natural
Sikorski structure: the set of all R-valued functions that
locally extend to X.
If Z is closed, then this structure is just the restrictions of
FX to Z.
If ∼ is an equivalent relation on X, then X/∼ has a natural
Sikorski structure: the set of all R-valued functions on X∼
that lift to FX .
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Triples

Definition
Given a set X, one can equip it with a diffeology DX and a
Sikorski structure FX , obtaining a triple (DX , X,FX).
If f ◦ p is smooth for every p ∈ DX and f ∈ FX , then we
call the triple compatible.
If DX (resp. FX) contains all parametrisations p (resp.
functions f ) such that p ◦ f is smooth for all f ∈ FX (resp.
plots p ∈ DX ), we say that DX is determined by FX (resp.
FX is determined by DX ).
If DX and FX determine each other, we call the triple
reflexive.
The category of reflexive triples is isomorphic to the
category of Frölicher spaces. [W12,BIZKW]
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Convex Sets

Let K ⊆ Rn be convex, equipped with the induced diffeology
DK and Sikorski structure FK .

Theorem ([KW22])
1 If K is locally closed, then (DK ,K,FK) is a reflexive triple.
2 Let K ⊆ R2 be the open upper half plane along with the

non-negative x-axis. There exists a diffeologically smooth
f : K → R that does not locally extend to a smooth function
of R2 about the origin. Thus (DK ,K,FK) is not reflexive.

x

y

Jordan Watts Workshop on Lie Groups, Sing. Spaces, & Higher Struct.



The Hamiltonian Case

Zprin

�

I //

πprin

��

Z

�

i //

πZ
��

(M,ω)

π

��

Φ // g∗

(M//0G)prin
J

//M//0G j
//M/G

Back to whether Sjamaar 0-forms correspond to
diffeological 0-forms, this is true if (DZ , Z, C∞(M)|Z) is a
reflexive triple.
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Thank you!
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