Differential Forms on Symplectic Quotients

Jordan Watts

Central Michigan University

January 11, 2023

Jordan Watts Workshop on Lie Groups, Sing. Spaces, & Higher Struct.

$$(M,\omega)$$

•
$$(M, \omega)$$
 - a connected symplectic manifold,

$$\begin{array}{ccc} (M,\omega) & \stackrel{\Phi}{\longrightarrow} \mathfrak{g}^* \\ & & & \\ & & \\ M/G \end{array}$$

• G - a compact Lie group acting in a Hamiltonian fashion on M with (equivariant) momentum map Φ ,

$$\begin{array}{c|c} Z & \stackrel{i}{\longrightarrow} (M, \omega) & \stackrel{\Phi}{\longrightarrow} \mathfrak{g}^* \\ \pi_Z & & & & \downarrow \pi \\ M / _0 G & \stackrel{j}{\longrightarrow} M / G \end{array}$$

- Z the level set $\Phi^{-1}(0)$.
- If 0 is a regular value of Φ, then Z is a closed submanifold of M on which G acts locally freely.
- In this case, $M / /_0 G$ is a symplectic orbifold.

$$\begin{array}{c|c} Z & \stackrel{i}{\longrightarrow} (M, \omega) & \stackrel{\Phi}{\longrightarrow} \mathfrak{g}^* \\ \pi_Z & & & & \downarrow \pi \\ M / _0 G & \stackrel{j}{\longrightarrow} M / G \end{array}$$

- If 0 is a critical value of Φ , then Z is a (closed) Whitney stratified subspace of M on which G acts.
- In this case, $M //_0 G$ is a symplectic stratified space [SjL91].

- $M_{(H)} := \{x \in M \mid \operatorname{Stab}(x) \text{ is conjugate to } H\}$
- Together, the connected components of each (non-empty) $M_{(H)}$ form a Whitney stratification, called the **orbit-type** stratification on M.
- This induces a Whitney stratification on M/G whose strata are given by connected components of each (non-empty) $(M/G)_{(H)} := \pi(M_{(H)})$, also called the **orbit-type** stratification on M/G.

Orbit-Type Stratifications

- Also induced is a Whitney stratification on Z whose strata are given by connected components of each (non-empty) Z_(H) := Z ∩ M_(H), also called the orbit-type stratification on Z.
- This, in turn, induces a Whitney stratification on $Z/G =: M/_0 G$ whose strata are given by connected components of each (non-empty) $(Z/G)_{(H)} := \pi_Z(Z_{(H)})$, also called the **orbit-type stratification on** $M/_0 G$.
- Each stratum of the orbit-type stratification on $M/_0 G$ is a symplectic manifold, with each symplectic structure induced by one global Poisson structure on $M/_0 G$.

Sjamaar Forms

- Let Z_{prin} and (M//₀ G)_{prin} be the principal strata of the orbit-type stratifications on Z and M//₀G, resp., which are open and dense in Z and M//₀G, resp.
- Denote by I and J the inclusions $Z_{\text{prin}} \hookrightarrow Z$ and $(M//_0 G)_{\text{prin}} \hookrightarrow M//_0 G$, resp.
- Denote by π_{prin} the restriction $\pi|_{Z_{\text{prin}}}$.

Definition ([Sj05])

A Sjamaar *k*-form σ on $M/_0 G$ is a *k*-form on $(M/_0 G)_{\text{prin}}$ for which there exists $\tilde{\alpha} \in \Omega^k(M)$ satisfying $(i \circ I)^* \tilde{\alpha} = \pi_{\text{prin}}^* \sigma$.

- Without loss of generality, we may assume $\tilde{\alpha}$ is *G*-invariant.
- Obtain a de Rham complex $(\Omega^{\bullet}_{Si}(M//_0 G), d)$.
- Obtain an associated Poincaré Lemma, Stokes' Theorem, and a de Rham Theorem.

Question

Is $(\Omega^{\bullet}_{Sj}(M/_{0}G), d)$ intrinsic? That is, is it independent of how we obtain $M/_{0}G$? (For instance, if doing reduction in stages, there are multiple ways of presenting the symplectic quotient, all of which are "symplectomorphic".)

• If we could show that $(\Omega^{\bullet}_{Sj}(M/\!/_{0}G), d) \cong (\Omega^{\bullet}(M/\!/_{0}G), d)$, where the latter is the diffeological de Rham complex, then the answer would be "yes".

Diffeology

Definition

Let *X* be a set. A **parametrisation** $p: U_p \to X$ is a map from an open subset U_p of some \mathbb{R}^n (*n* is not fixed). A **diffeology** \mathcal{D}_X on *X* is a family of parametrisations satisfying all constant parametrisations are in \mathcal{D}_X ,

2 if p is a parametrisation and $\{U_{\alpha}\}$ an open cover of U_p such that for each α

$$p|_{U_{\alpha}} \in \mathcal{D}_X$$

then $p \in \mathcal{D}_X$,

③ if $p \in D_X$ and $f: V \to U_p$ smooth with *V* an open subset of some \mathbb{R}^n then $p \circ f \in D_X$.

Call (X, \mathcal{D}_X) a diffeological space and each $p \in \mathcal{D}_X$ a plot.

Definition

A map $F: (X, \mathcal{D}_X) \to (Y, \mathcal{D}_Y)$ is diffeologically smooth if $F \circ p \in \mathcal{D}_Y$ for every $p \in \mathcal{D}_X$.

• Obtain a "complete, co-complete quasi-topos" [BH11]. In particular, we obtain a category admitting all subsets, quotients, products, coproducts, and function spaces.

Definition

A diffeological k-form η on (X, D_X) is an assignment to each p ∈ D_X a k-form η_p ∈ Ω^k(U_p) such that for any f: V → U_p smooth with V an open subset of some ℝⁿ,

$$\eta_{p \circ f} = f^* \eta_p.$$

- Given a diffeological from η, define dη to be the assignment p → dηp.
- Obtain a de Rham complex $(\Omega^{\bullet}(X), d)$.

Example

Given a smooth manifold, it has a natural diffeology consisting of all smooth maps into it from open subsets of cartesian spaces. The diffeological de Rham complex is (isomorphic to) the standard one.

Example ([KW16], [W12] for compact case)

If $G \circlearrowright M$ is a proper Lie group action, then

$$\pi^* \colon (\Omega^{\bullet}(M/G), d) \to (\Omega^{\bullet}_{\mathrm{basic}}(M), d)$$

is an isomorphism. (In fact, a diffeomorphism.)

Example ([W22] ([W13?]))

Let $\mathcal{G}_1 \ \rightrightarrows \ \mathcal{G}_0$ be a proper Lie groupoid. Then

 $\pi^* \colon (\Omega^{\bullet}(\mathcal{G}_0/\mathcal{G}_1), d) \to (\Omega^{\bullet}_{\text{basic}}(M), d)$

is an isomorphism. (In fact, a diffeomorphism.) Here, π is the quotient map to the orbit space, and $\mu \in \Omega^k(\mathcal{G}_0)$ is **basic** if $s^*\mu = t^*\mu$. (Definition due to Eugene Lerman.)

Example ([M22])

If \mathcal{F} is a foliation on a manifold M which is regular, or singular but whose leaves of the same dimension assemble into diffeological submanifolds of M, then $(\Omega^{\bullet}(M/\mathcal{F}), d)$ is similarly isomorphic to $(\Omega^{\bullet}_{\text{basic}}(M), d)$. Here, $\mu \in \Omega^{k}(M)$ is **basic** if for every local section X of the distribution associated to \mathcal{F} ,

$$X \lrcorner \mu = 0$$
 and $\pounds_X \mu = 0$.

Hamiltonian Action Case

• The goal is to show that $J^* \colon (\Omega^{\bullet}(M/_{0}G), d) \to (\Omega^{\bullet}_{Sj}(M/_{0}G), d)$ is a (well-defined) isomorphism.

Proposition ([W12])

- If 0 is a regular value of Φ, then J* is a (well-defined) isomorphism.
- If 0 is a critical value of Φ , then $(\Omega^{\bullet}_{Sj}(M/_{0}G), d) \subseteq J^{*}(\Omega^{\bullet}(M/_{0}G), d)).$

• If σ is a Sjamaar form,

If σ is a Sjamaar form, then there exists a G-invariant α̃ on M such that (i ∘ I)*(α̃) = π^{*}_{prin}σ.

- If σ is a Sjamaar form, then there exists a G-invariant α̃ on M such that (i ∘ I)*(α̃) = π^{*}_{prin}σ.
- If 0 is a regular value, then since being horizontal is a closed condition, *i**α is a basic form on Z. Obtain a form β on M //₀G such that J*β = σ.

 If 0 is a critical value, then we can use the local finiteness of the stratification on Z, as well as the fact that α restricts to a basic form on each stratum of Z [Sj05], to obtain the second statement of the proposition.

• If $\sigma = 0$ and $0 \in \mathfrak{g}^*$ is a regular value of Φ ,

- If σ = 0 and 0 ∈ g* is a regular value of Φ, then i*α = 0 since Z_{prin} is open and dense in Z.
- π_Z^* is injective, and so $\beta = 0$. Thus J^* is injective.

- If 0 is a critical value of Φ, then the continuity argument going from Z_{prin} to Z no longer is clear.
- In particular, the relationship between tangent vectors and differential forms has yet to be explored in the diffeological world. Work by Christensen-Wu [CW16,CW22] in recent years may be a starting point.

• If β is a form on $M / /_0 G$, then to obtain that $J^* \beta$ is Sjamaar,

- If β is a form on $M//_0 G$, then to obtain that $J^*\beta$ is Sjamaar, we require $\pi_Z^*\beta$ to extend to some form $\tilde{\alpha}$ on M.
- If 0 ∈ g is a regular value, then Z is a closed submanifold, and so this occurs.

 If 0 ∈ g is a critical value, then we are left with an extension problem. (We also still need to understand the relationship between tangent vectors and forms in the diffeological world.)

An Example

Example

Suppose G = S¹ acts on M = C² ≅ R⁴ linearly with weights ±1, and

$$\Phi(z_1, z_2) = |z_2|^2 - |z_1|^2.$$

- Then Z is a quadratic cone over a torus (homeomorphic to $(\mathbb{T}^2 \times [0,1])/(\mathbb{T}^2 \times \{0\})$).
- In the case of 0-forms, the extension problem becomes: does every diffeologically smooth function *f* : *Z* → ℝ extend to a smooth function on *M*?
- This extension problems brings us to another facet of my research.

Definition

Let *X* be a set. A **Sikorski structure** on *X* is a family of \mathbb{R} -valued functions \mathcal{F}_X such that

- if $f_1, \ldots, f_n \in \mathcal{F}_X$ and $g \in C^{\infty}(\mathbb{R}^n)$, then $g(f_1, \ldots, f_n) \in \mathcal{F}_X$;
- ② if given f: X → ℝ there is an open cover {U_α} of X and for each α there exists g_α ∈ F_X such that

$$f|_{U_{\alpha}} = g_{\alpha}|_{U_{\alpha}},$$

then $f \in \mathcal{F}_X$. (This is with respect to the initial topology on X induced by \mathcal{F}_X .) (X, \mathcal{F}_X) is called a **Sikorski space**.

Examples

- Any smooth manifold M has a natural Sikorski structure: $C^{\infty}(M)$.
- Any subset Z of a Sikorski space (X, F_X) has a natural Sikorski structure: the set of all ℝ-valued functions that locally extend to X.
- If Z is closed, then this structure is just the restrictions of \mathcal{F}_X to Z.
- If ~ is an equivalent relation on X, then X/~ has a natural Sikorski structure: the set of all ℝ-valued functions on X~ that lift to F_X.

Triples

Definition

- Given a set X, one can equip it with a diffeology D_X and a Sikorski structure F_X, obtaining a triple (D_X, X, F_X).
- If *f p* is smooth for every *p* ∈ D_X and *f* ∈ F_X, then we call the triple compatible.
- If D_X (resp. F_X) contains *all* parametrisations p (resp. functions f) such that p ∘ f is smooth for all f ∈ F_X (resp. plots p ∈ D_X), we say that D_X is **determined by** F_X (resp. F_X is **determined by** D_X).
- If D_X and F_X determine each other, we call the triple reflexive.
- The category of reflexive triples is isomorphic to the category of Frölicher spaces. [W12,BIZKW]

Let $K \subseteq \mathbb{R}^n$ be convex, equipped with the induced diffeology \mathcal{D}_K and Sikorski structure \mathcal{F}_K .

Theorem ([KW22])

If K is locally closed, then (D_K, K, F_K) is a reflexive triple.
Let K ⊆ ℝ² be the open upper half plane along with the non-negative *x*-axis. There exists a diffeologically smooth f: K → ℝ that does not locally extend to a smooth function of ℝ² about the origin. Thus (D_K, K, F_K) is not reflexive.

Jordan Watts Workshop on Lie Groups, Sing. Spaces, & Higher Struct.

The Hamiltonian Case

• Back to whether Sjamaar 0-forms correspond to diffeological 0-forms, this is true if $(\mathcal{D}_Z, Z, C^{\infty}(M)|_Z)$ is a reflexive triple.

Thank you!

Jordan Watts Workshop on Lie Groups, Sing. Spaces, & Higher Struct.

- [BH11] John Baez and Alexander Huffnung, "Convenient categories of smooth spaces", *Trans. Amer. Math. Soc.* **363** (2011), 5789–5825.
- [BIZKW] Augustin Batubenge, Patrick Iglesias-Zemmour, Yael Karshon, and Jordan Watts, "Diffeological, Frölicher, and differential spaces", 2017. (preprint)
- [CW16] J. Daniel Christensen and Enxin Wu, "Tangent spaces and tangent bundles for diffeological spaces", *Cah. Topol. Géom. Différ. Catég.*, 57 (2016), 3–50.
- [CW22] J. Daniel Christensen and Enxin Wu, "Exterior bundles in diffeology", Israel J. Math., 2022. (published online)
- [KW16] Yael Karshon and Jordan Watts, "Basic forms and orbit spaces: a diffeological approach", *SIGMA*, **12** (2016), no. 26.

References

- [KW22] Yael Karshon and Jordan Watts, "Smooth maps on convex sets", 2022. (preprint)
- [M22] David Miyamoto, "The basic de Rham complex of a singular foliation", *IMRN*, 2022. (published online)
- [SjL91] Reyer Sjamaar and Eugene Lerman, "Stratified symplectic spaces and reduction", *Ann. of Math. (2)*, **134** (1991), 375–422.
- [Sj05] Reyer Sjamaar, "A de Rham theorem for symplectic quotients", *Pacific J. Math.*, **220** (2005), 153–166.
- [W12] Jordan Watts, *Diffeologies, Differential Spaces, and Symplectic Geometry*, Ph.D. Dissertation, University of Toronto, 2012.
- [W22] Jordan Watts, "The orbit space and basic forms of a proper Lie groupoid", *Trends in Mathematics, Research Perspectives: Proceedings of the 12th ISAAC Congress, Aveiro, Portugal, 2019*, Birkhäuser, 2022.