
MTH 744 - TOPICS IN GEOMETRY (FALL 2022)
LECTURE NOTES ON LIE GROUP ACTIONS

JORDAN WATTS

These are lecture notes, with exercises, starred exercises, and presentations, for a graduate
topics course on Lie group actions. The more exercises a student attempts, the greater their
knowledge of the subject will become. The starred exercises tend to be a bit more difficult,
and make good presentation-style problems. The presentations are designed for more serious
preparation than the starred exercises, and would make good short talks, perhaps with slides.

The notes are designed for graduate students without assuming a lot of experience with
topology or analysis in multiple dimensions. They cover the basics of Lie groups and their
actions, as well as important theorems for proper actions such as Bochner’s Linearisation
Theorem, the Slice Theorem and Equivariant Tubular Neighbourhood Theorem, as well as
the orbit type stratification.

If the opportunity arises, it would be beneficial to add a proof of the Quotient Manifold
Theorem (as opposed to leaving this as a presentation), study in more detail the orbit type
stratification of the orbit space of a proper action, as well as expand on Schwarz’ result on
the smooth functions on the orbit space of a proper Lie group action (which is only hinted
at using polynomials in the introduction). However, all of these things require more time
and background, some of which would be found in a standard course on smooth manifolds.
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Week 01: Introduction

Group Actions. We are primarily interested in group actions. We often understand groups
via their actions on sets. To review groups and their actions, see, for instance, Dummit &
Foote [DF99].

Definition 1.1 (Group Action). Let Γ be a group, and let S be a set. A group action of
Γ on S is a map α : Γ× S → S satisfying

(1) α(1Γ, x) = x for all x ∈ S, and

(2) α(γ2, α(γ1, x)) = α(γ2γ1, x) for all γ1, γ2 ∈ Γ and x ∈ S.

Here, the juxtaposition γ2γ1 is just multiplication in Γ. ⋄

Notation 1.2 (Group Action Notation). In reference to Definition 1.1, we will usually
denote α(γ, x) by γ · x, unless we need to be explicit. Also, to indicate that a group Γ acts
on a set S, we often write Γ ⟳ S. ⋄

Remark 1.3 (Left Versus Right Actions). Sometimes it will be convenient to refer to the
group action defined in Definition 1.1 as a left group action. A right group action,
denoted S ⟲ Γ, is a map β : S × Γ → S : (x, γ) 7→ x · γ satisfying

(1) x · 1Γ = x for all x ∈ S, and

(2) (x · γ1) · γ2) = x · (γ1γ2) for all γ ∈ Γ and x ∈ S.

Again, juxtaposition of group elements is just group multiplication in Γ However, if we want
the multiplication to appear on the right, but we still want a left action (which is most
common), then we typically replace γ in the definition of a right action with γ−1. ⌟

Exercise 1.4. Let Γ be a group acting on a set S on the right. Show that α(γ, x) := x · γ−1

is a left action. (In this way, we can turn any right action into a left action.)

Examples 1.5 (Examples of Group Actions).

(1) A group acts on itself on the left via left multiplication, and on the right via right
multiplication.

(2) A cyclic group Z/n acts on the plane C by [k]·z := e2πik/nz. In fact, we often will think
of cyclic groups as nth groups of unity Z/n = {e2πik/n ∈ C | k = 0, . . . , n− 1}. //

Definition 1.6 (Orbits, Stabilisers, and Orbit Sets). Given a group action of Γ on a set S,
the orbit of x, is the set

Γ · x := {y ∈ S | y = γ · x for some γ ∈ Γ}.
The stabiliser of the action at x, denoted StabΓ(x) or Γx, is the set

Γx := {γ ∈ Γ | γ · x = x}.
Finally, the group action induces an equivalence relation ∼ on S:

x1 ∼ x2 ⇔ ∃γ ∈ Γ s.t. x2 = γ · x1.
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The equivalence classes of ∼ are exactly the orbits of the action. The set of equivalence
classes S/∼ is called the orbit set (or quotient set), and is denoted by Γ⧹

S. ⋄

Exercise 1.7. Find the orbits and stabilisers of each action of Examples 1.5. How would
you describe the orbit sets?

Exercise 1.8. Given a group action on a set, show that the stabiliser of a point is a subgroup
of the group acting.

Theorem 1.9 (Orbit-Stabiliser Theorem). Given an action of Γ on a set S, the orbits and
stabilisers are related by

Γ · x ∼= Γx⧹
Γ

where Γx acts on Γ by left multiplication. Here, by ∼=, we mean there is a bijection between
the two sets.

⋆Exercise 1.10. Prove Theorem 1.9.

Examples 1.11 (Dihedral and Permutation Groups). One example of an action of a finite
group on a set is that of a dihedral group Dn acting on the vertices of an n-gon. Recall,

Dn := ⟨σ, τ | σn = τ 2 = 1, στ = τσn−1⟩
∼= ⟨β1, β2 | β2

1 = β2
2 = (β1β2)

n = 1⟩
and that the order of Dn is 2n. Another example is a permutation group Sn acting on the
set {1, . . . , n}. //

Exercise 1.12. Prove that the two presentations of Dn above are isomorphic.

For now, we are interested in actions of groups on vector spaces; to simplify things, we
will only be concerned with Rn and Cn.

Definition 1.13 (Linear Group Action). Let GL(n;R) be the general linear group of Rn;
that is, the set of all n × n invertible matrices with entries from R; this is a group under
matrix multiplication. Let Γ be a subgroup of GL(n;R). Then an action of Γ on Rn is a
linear action if for any γ ∈ Γ and x ∈ Rn, the product γ · x is just multiplication of x on
the left by a matrix in Γ. More abstractly, an action of a group Γ on Rn is linear if for any
g ∈ Γ, scalar c ∈ R, and points x, y ∈ Rn,

(1) g · (x+ y) = g · x+ g · y, and

(2) g · (cx) = c(g · x). ⋄

We can almost always represent a linear action on Rn with matrices.

Exercise 1.14. Let Γ be a group acting linearly on Rn. Show that there is a natural group
homomorphism φ : Γ → GL(n;R) such that up to elements of the kernel K = ker(φ), the

4



action of Γ is the same as the action of the subgroup im(φ). Here, the kernel can be described
as

K := {g ∈ Γ | ∀x ∈ Rn, g · x = x}.
Show that Γ/K is isomorphic to a subgroup of GL(n;R).

We can replace Rn in Definition 1.13 with Cn; however, we typically will not care about
the complex structure or holomorphicity. Complex numbers will merely be convenient to
use. Also, typically, we do not care that elements of the group acting linearly in a linear
action are matrices; it is more relevant that they are linear transformations.

Exercise 1.15 (Cyclic Groups Acting on R2). We have already seen that the cyclic group
Z/n acts on C via multiplication by the associated roots of unity (see Examples 1.5). By
identifying C with R2 (i.e. forgetting complex multiplication), how can Z/n be represented
as a subgroup of GL(2;R)?

Example 1.16 (Dihedral Groups Acting on C). Let Dn act on C by

β1 · z := z,

β2 · z := e2πi/nz.

Here, β1 and β2 are as defined in Examples 1.11. //

Exercise 1.17. Convince yourself that the definitions of β1 ·z and β2 ·z above give an action
of all of Dn on C.

Invariant Polynomials. To study the geometry of linear group actions, we will make use
of polynomials that are invariant under the action.

Definition 1.18 (Invariant Polynomials). Let Γ be a group acting linearly on Rn (or Cn).
A real-valued function f : Rn → R is invariant under the action of Γ if for any γ ∈ Γ and
x ∈ Rn, we have

f(γ · x) = f(x).

We denote the set of invariant polynomials P (Rn)Γ, or R[x1, · · · , xn]Γ if we want to specify
the coordinates. ⋄

Definition 1.19 (Homogeneous Polynomials). A polynomial is homogeneous if all of its
terms have the same degree. For example, x2y + 3xy2 − y3 is homogeneous, but x2y + y2 is
not. ⋄

Proposition 1.20. Given a linear action of a group Γ on Rn, the invariant polynomials are
“graded” by their degree; that is, P (Rn)Γ is a direct sum of sets of homogeneous invariant
polynomials, where the sum is taken over the degrees:

P (Rn)Γ =
⊕
i∈N

{invariant homogeneous polynomials of degree i}.
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What this means is if p is an invariant degree-k polynomial, equal to the sum
∑k

i=0 qi
where each qi is homogeneous of degree i, then each qi is invariant.

Idea of Proof: [You are not expected to understand this proof.] The action of Γ on Rn

induces an action on P (Rn) as follows: for any p ∈ P (Rn), γ ∈ Γ and x ∈ Rn,

(g · p)(x) = g∗p(x) := p(g · x).

In particular, it induces an action on (Rn)∗, the dual vector space to Rn. This, in turn,
induces an action of Γ on covariant tensors of Rn which preserves degree; moreover, if α is
a symmetric covariant tensor, so is γ∗α for any γ ∈ Γ. Finally, there is a natural linear map
Φ from symmetric covariant tensors of degree k to polynomials of degree k on Rn; also, this
Φ is Γ-equivariant; that is, it Φ(g∗α) = g∗Φ(α). □

Example 1.21 (Invariant Polynomials for Z/n ⟳ C ∼= R2). We want to find all invariant
polynomials of the Z/n action on C from Examples 1.5. Instead of using the coordinates
(x, y) of R2 ∼= C, we will use z and z instead:

z = x+ iy,

z = x− iy.

To find the invariant polynomials, it will be sufficient to find a minimal set of generators of
the ring P (C)Z/n, which turns out to be finite. Consider the polynomials

p1(z, z) := zz = |z|2,
p2(z, z) := ℜ(zn),
p3(z, z) := ℑ(zn).

Here, ℜ and ℑ are the real and imaginary parts, resp. //

Exercise 1.22. Find the linear transformation that sends (x, y) to (z, z). Prove that this is
an element of GL(2;C). In other words, this is a perfectly good change of coordinates!

⋆Exercise 1.23. Show that the polynomials p1, p2, and p3 of Example 1.21 are invariant,
and that any invariant polynomial is an algebraic combination of them.

Exercise 1.24. Try to find a minimal generating set for the invariant polynomials for the
dihedral action of Dn on C given in Example 1.16

Next, we want to find relations between the polynomials making up a minimal generating
set for P (Rn)Γ.

Example 1.25 (Relations for Invariant Polynomials). Consider the minimal set of generators
for P (R2)Z/n given in Example 1.21. Prove that we have the following relations for all z ∈ C:

p1(z, z)
n = p2(z, z)

2 + p3(z, z)
2,

p1(z, z) ≥ 0.
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Form the Hilbert map p : C → R3 by p = (p1, p2, p3). In Exercise 1.26, you will show that
the orbit space Z/2⧹

C is in one-to-one correspondence with the image of p! Since the image
of p sits inside of R3, this gives us a way to study the orbit space analytically ; that is, we
can do analysis on this space! //

Exercise 1.26.

(a) What is the image of p?

(b) Show that each orbit lies in exactly one level set of p.

(c) Show that each orbit is exactly one level set of p in the case n = 2.

Exercise 1.27. Repeat Example 1.25 for the action of Dn on C given in Example 1.16.
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Week 02: Topological Manifolds

Some Point-Set Topology . We begin by going over some topology. A topology is a tool
used to arrange points in a set; namely, it uses so-called “open sets” to separate points from
each other. A good reference is the appendix of Lee [Lee13], but Munkres [Mun00] is also
a standard text on “point-set topology”.

Definition 2.1 (Topologies). Let X be a set. A topology T on X is a subset of the power
set P(X) of X satisfying:

(1) ∅, X ∈ T ;

(2) if {Uα} is any family of elements of T , then
⋃
α Uα ∈ T ;

(3) if {U1, . . . , Uk} is any (finite) family of elements of T , then
⋂k
i=1 Ui ∈ T .

We call (X, T ) a topological space (although we will often drop T when it is understood),
and call the elements of T open (sub)sets of X. ⋄

Example 2.2 (Topology on R). The Euclidean topology on R is the standard one, whose
open sets are disjoint unions of open intervals. Recall that these are defined as follows:
S ⊆ R is open if for each x ∈ S, there is some ε > 0 so that (x− ε, x+ ε) ⊆ S. //

Example 2.3 (Euclidean Topology of Rn). We define the Euclidean topology of Rn similarly
to that of R, but replacing “intervals” with “balls” (or “disks” in the case n = 2). A set S ⊆ Rn

is open (or contained in the Euclidean topology) if for each x ∈ S, there is some ε > 0
so that the ball of radius ε centred at x, denoted Bε(x), is contained in S. //

Remark 2.4 (Open Neighbourhoods). Instead of using intervals, disks, and balls above, we
can instead use “open neighbourhoods”. Given a topological space X, an open neighbour-
hood of a point x ∈ X is an open set containing x. ⌟

Example 2.5 (Trivial/Indiscrete Topology). Given a set X, the trivial topology (or in-
discrete topology) is the topology T := {∅, X}. //

Example 2.6 (Discrete Topology). Given a set X, the discrete topology is the power set
P(X); that is, all sets are open. //

Example 2.7 (Subspace Topology). Let (X, T ) be a topological space and Y ⊆ X. The
subspace topology of Y , denoted TY , is given as follows: U ⊆ Y is in TY if there exists
V ∈ T so that U = V ∩ Y . //

Exercise 2.8. Show that the Euclidean topology on Rn is, in fact, a topology.

Exercise 2.9. Given a topological space (X, T ), show that the subspace topology on a
subset Y ⊆ X is, in fact, a topology.

Now that we have introduced topological spaces, the natural thing to do next is to “topol-
ogise” the functions between them.
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Definition 2.10 (Continuous Maps). Given two topological spaces (X, TX) and (Y, TY ), a
function f : X → Y is continuous if for any V ∈ TY , the preimage satisfies f−1(V ) ∈ TX .
That is, preimages of open sets are open. ⋄

Exercise 2.11 (Continuous Maps and the Euclidean Topology).

(1) Let U and V be open subsets of R. Show that f : U → V is continuous in the
traditional (ε-δ)-sense if and only if it is continuous as defined in Definition 2.10.

(2) Let U ⊆ Rm and V ⊆ Rn be open. The traditional definition of a continuous map
f : U → V is given as follows: f is continuous if for any x ∈ U and ε > 0, there
exists δ > 0 such that if x0 ∈ U and |x − x0| < δ, then |f(x) − f(x0)| < ε. (Here,
| · | is the standard norm on Rn from linear algebra: |x| :=

√
x21 + · · ·+ x2m.) Show

that f : U → V is continuous in the traditional sense if and only if it is continuous
as defined in Definition 2.10.

Exercise 2.12.

(1) Given a topological space (X, T ) and a subset Y ⊆ X, show that the inclusion map
iY : Y ↪→ X is continuous.

(2) Let X be given the discrete topology and Y be any topological space. Show that any
function f : X → Y is continuous.

(3) Let Y be given the trivial topology and X be any topological space. Show that any
function f : X → Y is continuous.

Remember that the idea of an “isomorphism” in group theory is a function between two
groups that are essentially the same: their underlying sets are in bijection and the group
structures behave exactly the same way. In fact, one can think of a bijection as an iso-
morphism between sets. With this idea in mind, what is an “isomorphism” of topological
spaces?

Definition 2.13 (Homeomorphism). Given topological spaces (X, TX) and (Y, TY ), a func-
tion f : X → Y is a homeomorphism if it is continuous, bijective, and its inverse f−1 : Y →
X is also continuous. ⋄

Exercise 2.14.

(1) Are a circle and an ellipse, both subsets of the plane, homeomorphic?

(2) Construct a continuous bijection from the interval [0, 2π) to the circle

S1 := {(x, y) ∈ R2 | x2 + y2 = 1}.
Is it a homeomorphism?

Many topological concepts from your study of R port to our more abstract setting; namely,
the definition of interior point, interior, boundary point, boundary, closed set, accumulation
point, isolated point, and closure. Moreover, many of the results you would have learned also
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port to our more abstract setting, typically with the same proofs. Indeed, the complement
of an open set is closed, and vice versa; a subset Y ⊆ (X, T ) is equal to the union of its
interior (denoted Y ◦) and the boundary points contained within it; the closure of Y (denoted
Y ) is the union of Y with its boundary (denoted bdy(Y )), as well as the union of Y with
its accumulation points; and a function f : (X, TX) → (Y, TY ) is continuous if and only if for
any closed set C ⊆ Y , the preimage f−1(C) is closed in X.

However, many properties do not carry forward; in particular, facts about sequences and
compactness often do not. For instance, there are topological spaces in which the limit of a
sequence may exist, but it may not be unique. Also, the Heine-Borel theorem (that compact
sets are precisely the sets that are closed and bounded) no longer makes sense: what does
“bounded” mean? To help alleviate the loss of properties (and intuition), we are going to
come up with some conditions that help “tame” the topological spaces we are dealing with.

Definition 2.15 (Hausdorff Topological Space). A topological space X is Hausdorff if
for any two points x, y ∈ X, there are disjoint open neighbourhoods U and V of x and y,
resp. ⋄

Exercise 2.16. Prove that Rn (with the Euclidean topology) is Hausdorff. (Hint: draw a
picture first.)

Exercise 2.17.

(1) Consider the set X = {x, y} with topology T = {∅, {x}, X}. Is this Hausdorff?

(2) Suppose X is a Hausdorff topological space and Y ⊆ X has the subspace topology.
Is Y Hausdorff?

It turns out that if the limit of a sequence exists in a Hausdorff topological space, then it
is unique. (Of course, we never defined what precisely this means; try coming up with the
definition of convergence of a sequence in an abstract topological space, and then prove this
claim!)

Definition 2.18 (Topological Basis). A basis B for a topology T on a set X is a collection
of open sets {Uα}α∈A such that for any U ∈ T , there is some subcollection {Uβ}β∈B⊆A such
that U =

⋃
β∈B Uβ. ⋄

Exercise 2.19. An equivalent definition for basis B of a topology on a set X is a collection
{Uα} of subsets of X such that X =

⋃
α Uα and for any two U, V ∈ B, the intersection U ∩V

is the union of elements of B. Prove that this is equivalent to the definition above. This
is how you can specify a topology by specifying its basis; we say the topology obtained in
this way is the topology generated by the basis B; its open sets are exactly unions of basis
elements (along with ∅).

Definition 2.20 (Second-Countability). A topological space X is second-countable if it
admits a countable basis. ⋄
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Exercise 2.21. If X is a second-countable topological space, and Y ⊆ X has the subspace
topology, show that Y is second-countable.

Example 2.22 (Rn is Second-Countable). The Euclidean topology on Rn is second-countable:
take for a basis all open balls of positive rational radii centred at points x = (x1, . . . , xn) ∈ Rn

such that xi ∈ Q for each i = 1, . . . , n. //

Exercise 2.23. Prove the claim in the previous example.

Topological Manifolds. We are now ready for the definition of a topological manifold.
One might argue that this is the nicest type of topological space you can have beyond Rn.

Definition 2.24 (Topological Manifold). A topological n-manifold M is a Hausdorff
second-countable topological space such that for every x ∈ M there exists an open neigh-
bourhood U of x and a homeomorphism φ : U → Ũ ⊆ Rn; this latter condition is often
summarised as saying that M is “locally homeomorphic to Rn”. Here, we call n the dimen-
sion of M . The homeomorphisms φ : U → Ũ are called (continuous) charts, and the
collection of all charts a (continuous) atlas of M . Sometimes we write Mn to indicate it
is n-dimensional (but try not to do this when it might be confused with the power). ⋄

Example 2.25 (Rn is an n-Manifold). Cartesian space Rn is an n-manifold (the identity
map serves as a chart, the only one needed). //

Example 2.26 (The Circle S1). The unit circle

S1 :=
{
(x, y) ∈ R2

∣∣|(x, y)| = 1
}

is a one-dimensional manifold. //

To see this, it suffices to check whether it is Hausdorff and second-countable, and then
construct an atlas for it. It follows from Exercise 2.17 that S1 is Hausdorff. It follows from
Exercise 2.21 that S1 is second-countable. We construct an atlas with exactly two charts.
Let N be the north pole of S1 and S the south pole. Let φ1 have domain S1 ∖ {S}, which
sends the point (x, y) on the circle to the unique point on the x-axis where the line through
S and (x, y) intersects it. Similarly, let φ2 have domain S1 ∖ {N}, which sends the point
(x, y) on the circle to the unique point on the x-axis where the line through N and (x, y)
intersects it.

⋆Exercise 2.27. Write down an explicit formula for φ1, and show that it is a homeomor-
phism onto R. Do the same for φ2.

We call φ1 and φ2 stereographic projections of S1. This completes the proof that S1

is a manifold.

Exercise 2.28. Define the n-sphere to be the set
Sn =

{
x ∈ Rn+1

∣∣ |x| = 1
}
.

Show that this is an n-manifold.
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Example 2.29 (Open Subsets of Manifolds). Any open subset of a topological manifold is
itself a topological manifold with the subspace topology. //

Definition 2.30 (Product Topology). Let (X, TX) and (Y, TY ) be topological spaces. De-
fine the product topology on X × Y to be the topology generated by the basis {U ×
V }U∈TX , V ∈TY . ⋄

Exercise 2.31. Prove that the product topology is, in fact, a topology. (You can do this
directly through the definition of a topology, or prove that the basis in the definition is, in
fact, a basis.)

Exercise 2.32. Show that the Euclidean topology on Rn is equal to the product topology.

Definition 2.33 (Product Manifolds). Let M and N be two topological manifolds of di-
mensions m and n, resp. The product manifold M × N is the topological space whose
topology is the product topology. This is a topological manifold: if {φα : Uα → Ũα} is an
atlas for M and {ψ : Vβ → Ṽβ} an atlas for N , then {φα × ψβ : Uα × Vβ → Ũα × Ṽβ} is an
atlas for M ×N . ⋄

⋆Exercise 2.34. Complete the proof that the product of two manifolds is again a manifold
by showing the following:

(1) If X and Y are Hausdorff topological spaces, then X × Y is Hausdorff.

(2) If X and Y are second-countable topological spaces, then X×Y is second-countable.

Example 2.35 (Tori). The torus (or 2-torus) is the manifold T2 := S1×S1. More generally,
we have the n-torus Tn :=

∏n
i=1 S1. //

Definition 2.36 (Topological Group). A topological group G is a group equipped with a
topology (often required to be Hausdorff) with a continuous multiplication map m : G×G→
G : (m1,m2) 7→ m1m2 and continuous inverse map inv : G→ G : g 7→ g−1. ⋄

Examples 2.37 (Examples of Topological Groups). Any finite group is a topological group
(with the discrete topology). The circle S1 has a group structure making it into a topological
group. More generally, many matrix groups are topological groups. Define Mat(n;R) to
be the set of all n × n matrices with real entries. This has a natural topology making
it homeomorphic to Rn2 (and so it is a topological manifold). Define GL(n;R) to be all
invertible matrices in Mat(n;R). This is a manifold (why?). It turns out that many of the
topological groups we care about are topological manifolds (but not always). //

Exercise 2.38. Answer the question “why” above.
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Week 03: Differentiable Maps

Here we review differentiable maps Rm → Rn, and use this notion to define a “smooth
structure” on a topological manifold. Lee in [Lee13, Appendix C] has a review of this
material, and Spivak’s Calculus on Manifolds [Spi65] is an excellent text on precisely this
topic. However, the following is based off of [Wad18, Chapter 11].

Differentiable Maps Rm → Rn.

Definition 3.1 (Differentiable Map). Let U ⊆ Rm be open and fix x0 ∈ U . A function
f : U → Rn is differentiable at x0 if there exists a linear map Tx0 : Rm → Rn such that for
sufficiently small h ∈ Rm,

f(x0 + h) = f(x0) + Tx0(h) + φ(h) (1)

where φ satisfies

lim
h→0

|φ(h)|
|h|

= 0.

More precisely, for every ε > 0, there exists δ > 0 such that if h ∈ Bδ(0), then φ(h)
|h| < ε. We

say that f is differentiable if it is differentiable at each point x0 ∈ U . ⋄

When m = n = 1, this should remind you of approximating a function near a fixed x0
with a linear approximation; in terms of graphs, this is the tangent line to the graph of f at
(x0, f(x0)). In fact, this idea generalises: for m > 1, the graph is approximated by a tangent
hyperplane, which is determined by the graph of the linear map above.

Example 3.2 (Linear Transformation). Let A : Rm → Rn be a linear transformation. For
any x0, h ∈ Rm, we have

A(x0 + h) = A(x0) + A(h) + φ(h)

where we take φ = 0. So taking A as Tx0 for each x0 ∈ Rm satisfies the definition of
differentiability. //

Example 3.3 (f(x) = ex). Since Tx0 may remind the reader of the derivative of a function
at x0, the previous example may be confusing. Indeed, we are essentially saying that the
derivative of a linear map at a point is itself; but doesn’t only the exponential map (up to a
constant factor) satisfy this in the case that m = n = 1? Take f(x) = ex. Then (1) becomes
for any x0, h ∈ R:

ex0+h = ex0 + Tx0(h) + φ(h)

where Tx0(h) = ex0h; the linear map Tx0 is scalar multiplication by ex0 . Using l’Hôpital’s
Rule, one can show that lim

h→0

|φ(h)|
|h| = 0. The point here is that there are two inputs to Tx0(h):

the point x0 which determines the linear map, and the input to the linear map, h. //

Proposition 3.4 (Properties of Differentiable Maps). Let U ⊆ Rm be open, f, g : U → Rn

differentiable, and a ∈ R.

(1) f is continuous.
13



(2) If x0 ∈ U , then Tx0 in (1) satisfies

Tx0 =

[
∂fi
∂xj

(x0)

]
,

which is referred to as the Jacobian matrix or total derivative of f at x0. In
particular, all partial derivatives of f exist, and Tx0 is unique; we often denote it by
Df |x0, or f ′(x0). (In the case n = 1, this is technically the transpose of the gradient
of f , which is a column vector function.)

(3) f + g is differentiable and D(f + g) = Df +Dg.

(4) af is differentiable and D(af) = aDf.

(5) f · g is differentiable and D(f · g)|x0 = g(x0)
tDf |x0 + f(x0)

tDg|x0 for all x0 ∈ U .

(6) If V ⊆ Rn is open with f(U) ⊆ V , and h : V → Rp is differentiable, then h ◦ f is
differentiable and D(h ◦ f)|x0 = Dh|f(x0)Df |x0 .

Proof. This is standard material that can be found in the cited texts. However, to give an
idea of how these proofs go, we prove Item 5. Set

Tx0 = g(x0)
tDf |x0 + f(x0)

tDg|x0 ;
this is a 1× n row vector. Since total derivatives are unique, it suffices to show

lim
h→0

(f · g)(x0 + h)− (f · g)(x0)− T (h)

|h|
= 0.

The numerator, which is equal to φ(h), can be broken down as follows:

φ(h) = (f · g)(x0 + h)− (f · g)(x0)− g(x0)
tDf |x0 − f(x0)

tDg|x0h
= (f(x0 + h)− f(x0)−Df |x0h) · g(x0 + h)

+Df |x0h · (g(x0 + h)− g(x0))

+ f(x0) · (g(x0 + h)− g(x0)−Dg|x0h).
Let the three terms at the end of the equalities above be referred to as T1(h), T2(h), and
T3(h), resp. It suffices to show that Ti(h)/|h| → 0 as h→ 0; we do so for T2(h)/|h|, referring
to [Wad18] for the other two.

|T2(h)| =
∣∣∣(Df |x0h) · (g(x0 + h)− g(x0))

∣∣∣
≤

∣∣∣(Df |x0h∣∣∣|g(x0 + h)− g(x0)|

≤
∣∣∣Df |x0∣∣∣|h||g(x0 + h)− g(x0)|.

Above, we applied the Cauchy-Schwarz Inequality twice, the second time using the operator
norm for a linear transformation:

|T | := sup
{
T (x)

∣∣ |x| = 1
}
.

Since g is differentiable at x0, it is continuous there by Item 1, and so g(x0 + h) → g(x0) as
h→ 0. Thus |T2(h)|/|h| → 0 as h→ 0. □
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Remark 3.5. The converse to Item 2 of Proposition 3.4 is generally not true: just because
all partial derivatives of a function exist at a point does not imply that the total derivative
exists there; one also requires the partial derivatives to exist in an open neighbourhood of
x0 and to be continuous at x0 to obtain the existence of Df |x0 . See [GO64] for examples of
such functions, and Definition 3.9 which indicates how to fix the issue. ⌟

The notation used here, a cross between calculus and linear algebra, can be confusing at
first. Let us break down the proof above for m = n = 2 to illustrate it even further.

Example 3.6 (Dot Product Proof). Let f, g : R2 → R2, in which case we write f = (f1, f2)
and g = (g1, g2), or in matrix notation,

f =

[
f1
f2

]
and similarly for g. Then, recalling that f · g = f1g1 + f2g2 = f tg,

D(f · g) =
[

∂(f1g1)
∂x1

+ ∂(f2g2)
∂x1

∂(f1g1)
∂x1

+ ∂(f2g2)
∂x2

]
=

[
∂f1
∂x1
g1 +

∂g1
∂x1
f1 +

∂f2
∂x1
g2 +

∂g2
∂x1
f2

∂f1
∂x2
g1 +

∂g1
∂x2
f1 +

∂f2
∂x2
g2 +

∂g2
∂x2
f2

]
.

On the other hand,

gtDf + f tDg =
[
g1 g2

] [ ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
+
[
f1 f2

] [ ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

]
=

[
g1

∂f1
∂x1

+ g2
∂f2
∂x1

g1
∂f1
∂x2

+ g2
∂f2
∂x2

]
+
[
f1

∂g1
∂x1

+ f2
∂g2
∂x1

f1
∂g1
∂x2

+ f2
∂g2
∂x2

]
.

The two results are equal. //

The following example is a great “sanity check”.

Example 3.7 (The Norm Squared Function). Let f : Rn → R be given by

x 7→ |x|2 = x21 + · · ·+ x2n.

Then
Df |x = 2

[
x1 · · · xn

]
.

Now, if we instead use Item 5 of Proposition 3.4, noting that f(x) = x ·x = idRn(x) · idRn(x),
then

Df |x = 2(idRn(x)t)D(idRn)|x
= 2

[
x1 · · · xn

]
idRn|x

= 2
[
x1 · · · xn

]
.

Here, we are using the fact that idRn is linear, and so by Example 3.2, its derivative evaluated
at x is idRn , which can be thought of as the n × n identity matrix. The two results match,
as expected. //
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Example 3.8 (Computation Using Chain Rule). Let f(x, y) = sin(xy) + xy2, x(s, t) = s2t,

and y(s, t) = est. We want to find ∂f
∂s

. Note that ∂f
∂s

is equal to D(f(x(s, t), y(s, t)))

[
1
0

]
,

where the total derivative D is with respect to s and t. Let g(s, t) = (x(s, t), y(s, t)); then
we are looking for D(f ◦ g). By the chain rule, this is Df(g(s, t))Dg(s, t). Thus,

∂f

∂s
=
∂f

∂x

∣∣∣
g(s,t)

∂g1
∂s

+
∂f

∂y

∣∣∣
g(s,t)

∂g2
∂s

.

(One often replace “g1” and “g2” with “x” and “y”, resp.) Computing:

∂f

∂s
= (y cos(xy) + y2)

∣∣
g(s,t)

· 2st+ (x cos(xy) + 2xy)
∣∣
g(s,t)

· test

= 2st(est cos(s2test) + e2st) + test(s2t cos(s2test) + 2s2test)

One should be warned here that in different contexts, especially in applications, the notation
can change. In particular, given a function f(x, y, t) and x = x(t) and y = y(t), then f
depends explicitly on t, as well as implicitly on t via x and y. Sometimes the notation ∂f

∂t

is used in this case for the derivative of f with respect to the explicit variable t, and df
dt

for
derivative of f with respect to all instances of t, explicit and implicit. In the latter case,

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂t
.

We will not need this for our purposes, however. //

Often times we want the derivative of a function to be continuous. We have a special
notation and name for such functions.

Definition 3.9 (Continuously Differentiable Function). Let U ⊆ Rm be open and f : U →
Rn a function. Then f is continuously differentiable, or C1, if its derivative Df : U ×
Rm → Rn exists and is continuous; equivalently, all first order partial derivatives of f exist
and are continuous on U . Denote the set of such functions by C1(U,Rn), or just C1(U) if
n = 1. ⋄

One can now ask whether Df is (continuously) differentiable. And so on.

Definition 3.10 (k-Times Continuously Differentiable Function). Let U ⊆ Rm be open
and f : U → Rn a function. The second derivative of f , denoted D2f , is the derivative of
Df : U × Rm → Rn. Similarly, the kth derivative of f , denoted Dkf , is the derivative of
Dk−1f , defined recursively. We say that f is k-times continuously differentiable, or
Ck, if Dkf exists and is continuous; equivalently, all partial derivatives of f of all orders
up to and including k exist and are continuous on U . Denote the set of such functions by
Ck(U,Rn), or just Ck(U) if n = 1. ⋄

Note that if f ∈ Ck(U,Rn), then Dif is continuous automatically for i = 0, . . . , k − 1
(where D0f := f). One can further ask f to be in Ck(U,Rn) for all k ∈ N.
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Definition 3.11 (Smooth Function). Let U ⊆ Rm be open and f : U → Rn a function. Then
f is smooth, or C∞, if it is in Ck(U,Rn) for all k ∈ N; equivalently, all partial derivatives
of all orders exist (and hence are continuous) on U . Denote the set of smooth functions on
U by C∞(U,Rn), or just C∞(U) if n = 1. ⋄

Examples 3.12 (Examples of Smooth Functions). All real-valued polynomials with real
coefficients of a finite number of variables are smooth. Similarly, rational functions are
smooth on their domains. Any analytic function is smooth; recall that a function f : U → Rn

is analytic if for any x ∈ U , there is an open neighbourhood V ⊆ U of x such that the
restriction f |V of f to V is equal to the Taylor series of f at x. //

⋆Exercise 3.13 (A Smooth Non-Analytic Function). Show that the following function is
smooth, but not analytic:

f(x) =

{
e−1/x if x > 0,
0 if x ≤ 0.

The function in the previous exercise is extremely important. It allows us to construct
so-called smooth bump functions.

Example 3.14 (Smooth Bump Function). Let a < b < c < d be real numbers. Consider
the function φ(x) defined by

φ(x) =
f(x− a)

f(x− a) + f(b− x)

f(d− x)

f(d− x) + f(x− c)
.

This function is smooth, equal to 0 on (−∞, a)∪(d,∞), equal to 1 on (b, c), strictly increasing
on (a, b), and strictly decreasing on (c, d). //

We end this subsection with a definition of “isomorphism” for open subsets of Cartesian
spaces with smooth maps.

Definition 3.15 (Diffeomorphism). Let U ⊆ Rm and V ⊆ Rn be open subsets, and f : U →
V a function. Then f is a diffeomorphism if it is a smooth bijection with a smooth
inverse. ⋄

Exercise 3.16.

(1) Are an open annulus and an open punctured disk diffeomorphic?

(2) Is the map R → R : x 7→ x3 a diffeomorphism?

Remark 3.17 (Invariance of Domain). It is a non-trivial result that homeomorphisms (and
hence diffeomorphisms) preserve the dimension of open sets of Cartesian spaces. And so, in
Definition 3.15, it is automatic that m = n. ⌟
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Smooth Manifolds. Differentiability is very important: we use it to do calculus. However,
we often need to do calculus on spaces that are not Cartesian space, and so we need to come
up with a way of pushing calculus beyond Rn. The first place we arrive in such a generalisa-
tion is topological manifolds; however, here we need to be careful. For instance, as topological
manifolds, the 2-sphere is homeomorphic to any (hollow) Platonic solid, which has cusps and
ridges. As you may recall, calculus misbehaves at such points, and so we need to eliminate
this sort of ambiguity: that the calculus you do is not preserved by homeomorphism. We fix
this problem by introducing a “smooth structure” on a manifold.

Definition 3.18 (Smooth Manifold). Let M be a topological n-manifold, and let A be a
topological atlas for it. We say that two charts φ : U → Ũ ⊆ Rn and ψ : V → Ṽ ⊆ Rn are
smoothly compatible if U ∩ V = ∅, or the map F from φ(U ∩ V ) ⊆ Ũ to ψ(U ∩ V ) ⊆ Ṽ
given by F := ψ◦φ−1|φ(U∩V ) is a diffeomorphism; we call such a map a transition function.

U

⟳
φ

zz

U ∩ V? _oo � � // V
ψ

$$
Ũ φ(U ∩ V )? _oo

F
// ψ(U ∩ V ) �

� // Ṽ

If all charts in an atlas are smoothly compatible with each other, then we call the atlas
a smooth atlas and its charts smooth charts. A topological manifold equipped with a
smooth atlas is called a smooth manifold.

We say that two smooth atlases on a topological manifold are equivalent if their union is
also a smooth atlas (that is, all charts from either atlas are smoothly compatible with each
other). In this way we can construct a maximal atlas: the union of all smooth atlases that
are equivalent. In theory, it is often convenient to work with a maximal atlas; in practice, it
is typically sufficient to work with a non-maximal one. ⋄

Exercise 3.19. Confirm that the atlas {φ1, φ2} constructed for the circle S1 (see Exam-
ple 2.26) is in fact a smooth atlas.

Example 3.20 (The n-Sphere Sn). Similar to S1, the atlas for Sn whose charts are stereo-
graphic projections (see Exercise 2.28) is a smooth atlas. //

Exercise 3.21. Confirm that the product of two smooth manifolds is a smooth manifold.

Example 3.22. Any open subsets of a smooth manifold is itself a smooth manifold. //
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Week 04: Smooth Maps Between Manifolds

In this section, we look at that “arrows” in the “category” of smooth manifolds: smooth
maps. Throughout this section, unless stated otherwise, all manifolds are smooth.

The Definition of a Smooth Map.

Definition 4.1 (Smooth Map Between Manifolds). Let M and N be (smooth) manifolds of
dimensions m and n, resp. A function F : M → N is smooth if for any x ∈M there exists
a (smooth) chart φ : U → Ũ ⊆ Rm about x, a (smooth) chart ψ : V → Ṽ ⊆ Rn about F (x)
such that F (U) ⊆ V , and a smooth map F̃ : Ũ → Ṽ such that the restriction F |U satisfies

F |U = ψ−1 ◦ F̃ ◦ φ;
that is, the following diagram commutes:

U

⟳F |U
��

φ // Ũ

F̃��

� � // Rm

V
ψ
// Ṽ �
� // Rn.

⋄

Proposition 4.2 (Smooth Maps are Continuous). Smooth maps are continuous.

Proof. Let F : M → N be smooth. Fix an open set W ⊆ N . It suffices to show that F−1(W )
is open in M ; that is, any point x ∈ F−1(W ) has an open neighbourhood U ⊆ F−1(W ).
Fix x ∈ F−1(W ). Since F is smooth, there are charts φ : U → Ũ and ψ : V → Ṽ about x
and F (x), resp., and a smooth map F̃ : Ũ → Ṽ such that F |U = ψ−1 ◦ F̃ ◦ φ. Smooth maps
between open subsets of Cartesian spaces are continuous, and φ and ψ are homeomorphisms;
thus

F−1(W ∩ V ) = φ−1
(
F̃−1(ψ(W ∩ V ))

)
is open in M , and is an open neighbourhood of x contained in F−1(W ). □

Exercise 4.3. Show that smoothness of a function F : M → N between manifolds is a
local property; that is, F is smooth if and only if for any x ∈ M there exists an open
neighbourhood U of x such that F |U is smooth.

Examples 4.4.

(1) A constant map F : M → N is smooth. (Why?)

(2) The identity map idM : M →M is smooth. (Why?)

(3) Let U ⊆M be an open set. Then the inclusion map i : U →M is smooth.

(4) Given manifolds M and N , the projection maps pr1 : M ×N →M and pr2 : M ×
N → N are smooth. //
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Exercise 4.5. Prove the last example: that the projection maps pr1 : M × N → M and
pr2 : M ×N → N are smooth.

Proposition 4.6 (Composition of Smooth Maps). The composition of two smooth maps is
again smooth.

Proof. Let F : M → N be smooth and G : N → P be smooth. Fix x ∈ M . There exist
charts φ : U → Ũ , ψ : V → Ṽ , and χ : W → W̃ about x, F (x), and G ◦ F (x), resp., such
that F (U) ⊆ V and G(V ) ⊆ W , and smooth maps F̃ : Ũ → Ṽ and G̃ : Ṽ → W̃ such that

F |U = ψ−1 ◦ F̃ ◦ φ

G|V = χ−1 ◦ G̃ ◦ ψ.
Thus,

G ◦ F |U = (χ−1 ◦ G̃ ◦ ψ) ◦ (ψ−1 ◦ F̃ ◦ φ) = χ−1G̃ ◦ F̃ ◦ φ.
Since G̃ ◦ F̃ is smooth and x is arbitrary, this shows that G ◦ F is smooth. □

Example 4.7 (The Exponential Map). The exponential map exp: R → S1 : θ 7→ eiθ =
(cos θ, sin θ) is smooth. (Why?) //

The previous example generalises.

Proposition 4.8 (Smooth Maps to a Product Manifold). Given manifolds M , N1, . . . , Nk,
a map F : M →

∏k
i=1Ni is smooth if and only if pri ◦F : M → Ni is smooth for i = 1, . . . , k.

⋆Exercise 4.9. Prove Proposition 4.8.

We now define the “isomorphisms” for smooth manifolds.

Definition 4.10 (Diffeomorphism). Let M and N be manifolds and F : M → N a function.
Then F is a diffeomorphism if it is a smooth bijection with smooth inverse. ⋄

Example 4.11 (Rn and the n-Ball). The following functions serve as diffeomorphisms from
the unit ball centred at the origin in Rn to Rn itself:

f1(x) =
x√

1− |x|2
,

f2(x) = tan
(π
2
|x|2

)
x. //

Exercise 4.12. Proving that f1 and f2 of Example 4.11 are indeed diffeomorphisms is a
very good exercise. You have the technology to do this exercise now, although the next
section may also be useful.

Exercise 4.13. Let F : M → N be smooth. The graph of F is the set ΓF := {(x, y) ∈
M×N | y = F (x)}. Construct a smooth atlas on ΓF such that the resulting smooth manifold
is diffeomorphic to M .
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The Implicit Function Theorem. The Implicit Function Theorem is one of the most
powerful theorems to come out of the study of differentiable maps between Cartesian spaces.
In this section we use it to prove the Inverse Function Theorem, as well as to prove that
levels sets of regular values of smooth functions are smooth manifolds.

Definition 4.14 (Partial Jacobian). Let U ⊆ Rm be open and F : Rm → Rn a C1 map with
m ≥ n. Define the partial Jacobian of F by

∂(F1, . . . , Fn)

∂(xk1 , . . . , xkn)
:= det

[
∂Fi
∂xkj

]n
i,j=1

.

Here, typically k1, . . . , kn is some increasing sequence of integers from the set {1, . . . ,m}. The
matrix which we take the determinant of is often called the partial Jacobian matrix. ⋄

Theorem 4.15 (The Implicit Function Theorem). Let U ⊆ Rm+n be open and F : U → Rn

be Ck where k ∈ (N ∖ {0}) ∪ {∞}. If (x0, y0) ∈ Rm × Rn = Rm+n such that F (x0, y0) = 0
and

∂(F1, . . . , Fn)

∂(y1, . . . , yn)

∣∣∣
(x0,y0)

̸= 0,

then there exist an open neighbourhood V ⊆ Rm of x0 and a unique Ck function ϕ : V → Rn

such that ϕ(x0) = y0 and F (x, ϕ(x)) = 0 for all x ∈ V .

Presentation 1. Prove the Implicit Function Theorem (without using the Inverse Function
Theorem below).

Theorem 4.16 (The Inverse Function Theorem). Let U ⊆ Rm be open and F : U → Rm a
Ck where k ∈ (N ∖ {0}) ∪ {∞}. If x0 ∈ U and det (Df |x0) ̸= 0, then there exists an open
neighbourhood V of x0 on which F |V is a diffeomorphism onto its image.

Presentation 2. Show that the Implicit Function Theorem and the Inverse Function The-
orem are equivalent; that is, if you assume one, you can prove the other.

Definition 4.17 (Regular Points and Values). Let U ⊆ Rm be open, and F : U → Rn be
smooth. A point x ∈ U is regular point of F if DF |x is surjective; otherwise, it is a critical
point. A point y ∈ Rn is a regular value of F if every x ∈ F−1(y) is a regular point;
otherwise, y is a critical value of F . ⋄

⋆Exercise 4.18. Let U ⊆ Rm be open, and F : U → Rn be smooth. Given a regular
value y0 ∈ Rn, show that the preimage F−1(y) admits a smooth manifold structure in a very
natural way. (Hint: Use the Implicit Function Theorem and Exercise 4.13.)

We will study precisely what the “natural way” mentioned in the previous exercise above
is later, but this is not needed for the construction of the smooth atlas.

Example 4.19 (The n-Sphere as a Level Set). By the previous exercise, Sn is a smooth
manifold, since it is the level set of F (x1, . . . , xn+1) := x21 + · · · + x2n+1 at the regular value
1. //
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Remark 4.20. Everything in this section can be generalised from open subsets of Euclidean
spaces to smooth manifolds, using charts. ⌟

22



Week 05: Lie Groups

Topological groups combine the algebraic theory of groups with topology. We go further
and combine groups with smooth manifolds, yielding Lie groups.

Definition 5.1 (Lie Group). A Lie group is a topological group G equipped with a smooth
atlas making it into a smooth manifold such that the multiplication map m : G × G →
G : (g, h) 7→ gh is smooth. ⋄

⋆Exercise 5.2. Given a Lie group G, prove that the inversion map inv : G→ G : g 7→ g−1

is smooth.

Example 5.3 (Finite Group). Any finite group is a Lie group. (It is a 0-dimensional
manifold.) //

Example 5.4 (General Linear Group). We saw that Mat(n;R), the n × n matrices with
real entries, form a space homeomorphic to Rn2 ; in fact, this is a diffeomorphism. We
also saw that GL(n;R) is an open subset of this, which makes it a smooth manifold by
Example 3.22. Since matrix multiplication is smooth (why?) and inverse is smooth (why?),
this makes GL(n;R) into a Lie group. //

Example 5.5 (Special Linear Group). The special linear group, denoted SL(n;R) is the
subgroup of GL(n;R) given by

SL(n;R) := {A ∈ GL(n;R) | detA = 1}.

It is a closed subgroup of GL(n;R), and is a “Lie subgroup” of it as well, meaning that it is
also a Lie group whose smooth structure is obtained from that of GL(n;R). //

Exercise 5.6. Let x1, . . . , xn ∈ Rn be linearly independent vectors. Let P be the paral-
lelopiped determined by {x1, . . . , xn}. Show that the volume of P is equal to the volume of
AP (the parallelopiped determined by {Ax1, . . . , Axn}) for any A ∈ SL(n;R). Then show
the converse: any matrix A ∈ Mat(n;R) that preserves the volume of all parallelopipeds P
as described above is in SL(n;R).

Example 5.7 (Orthogonal Group). The orthogonal group, denoted O(n), is the subgroup
of GL(n;R) given by

O(n) := {A ∈ GL(n;R) | AAt = I}
where I is the identity matrix (equal to idRn). This is a closed subgroup of GL(n;R), and
thus is a Lie subgroup. //

Exercise 5.8. Let ⟨x, y⟩ be the standard inner product (or dot product) for x, y ∈ Rn, and
let A ∈ O(n). Show that ⟨Ax,Ay⟩ = ⟨x, y⟩ for all x, y ∈ Rn. Use this to show that the
columns of A form an orthonormal basis of Rn. Then show the converses, obtaining that
A ∈ O(n) if and only if ⟨Ax,Ay⟩ = ⟨x, y⟩ for all x, y ∈ Rn if and only if the columns of A
form an orthonormal basis of Rn.
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Example 5.9 (Unitary Group). We can define GL(n;C) analogously to GL(n;R): invertible
(n×n)-matrices with complex entries. This is a Lie group, in the same way that GL(n;R) is
(it is a subspace of Mat(n;C), which is identified with Cn2 ∼= R2n2). Recall that the adjoint
of a matrix A ∈ Mat(n;C) is the conjugate transpose A∗: if A = [aij], then A∗ = [aji]. The
unitary group, denoted U(n), is the subgroup of GL(n;C) given by

U(n) := {A ∈ GL(n;C) | AA∗ = I}.
This is a closed subgroup of GL(n;C), and thus is a Lie subgroup. //

Exercise 5.10. Let ⟨z, w⟩C be the Hermitian inner product on Cn; that is, for z, w ∈ Cn,

⟨z, w⟩C :=
n∑
i=1

ziwi.

Show that ⟨Az,Aw⟩C = ⟨z, w⟩C for any z, w ∈ Cn and any A ∈ U(n). Use this to show
that the columns of A form a “unitary basis” of Cn as a complex vector space equipped with
the Hermitian inner product. (A unitary basis has the same definition as an orthonormal
basis, but with respect to the Hermitian inner product.) Then show the converses, obtaining
that A ∈ U(n) if and only if ⟨Az,Aw⟩C = ⟨z, w⟩C for all z, w ∈ Cn if and only if the columns
of A form a unitary basis of Cn with respect to the Hermitian inner product.

Exercise 5.11. We often identify Cn with R2n. What happens to the Hermitian inner
product under this identification? Show that if z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn

and each zj = xj + iyj and wj = uj + ivj for j = 1, . . . , n, then

⟨z, w⟩C = ⟨(x, y), (u, v)⟩+ i(x, y)tΩ(u, v)

where by (x, y) we mean (x1, . . . , xn, y1, . . . , yn), which is also identified with the correspond-
ing column vector in R2n, and Ω is the symplectic form given in block form by

Ω =

[
0 In

−In 0

]
.

(Here, In is the (n× n)-identity matrix.)

Example 5.12. The symplectic group, denoted Sp(2n,R), is the subgroup of GL(2n;R)
given by

Sp(2n;R) := {A ∈ GL(2n;R) | AtΩA = Ω}
where Ω is the symplectic form from Exercise 5.11. This is a closed subgroup of GL(2n;R),
and hence a Lie subgroup. //

Examples 5.13. Define SO(n) := O(n) ∩ SL(n;R) and SU(n) := U(n) ∩ SL(n;C) (where
SL(n;C) is defined as all (n× n)-matrices with complex entries and determinant 1). These
are called the special orthogonal group and special unitary group, resp. //

Exercise 5.14. Prove that SO(2) and U(1) are each diffeomorphic to S1; moreover, the
resulting diffeomorphism between SO(2) and U(1) can be chosen to be a group isomorphism.
(This is called a Lie group isomorphism.)
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Week 06: Lie Group Actions

In this section we begin to examine Lie group actions. We will immediately find that we
need to cover more material on manifolds and general topology to make sense of what is
happening.

Basics of Lie Group Actions.

Definition 6.1 (Lie Group Action). Let M be a manifold and G a Lie group. A (left) Lie
group action of G on M is a group action G ⟳M such that the action map α : G×M →
M : (g, x) 7→ g · x is smooth. ⋄

Example 6.2 (Matrix Group Action). Let G be a Lie subgroup of GL(n;R). Then G acts
on Rn via matrix multiplication. //

Proposition 6.3 (Stabilisers are Lie Subgroups). Let G be a Lie group acting on a manifold
M . For each x ∈M , the stabiliser Stab(x) is a closed, hence Lie, subgroup of G.

Proof. Fix x ∈ M . Then Stab(x) := {g ∈ G | g · x = x}, which we showed is a subgroup
of G (see Exercise 1.8). Now the action map α : G ×M → M is smooth, and restricts to
a smooth map G × {x} ∼= G → M sending g to g · x. The pre-image of {x} is a closed set
since α is continuous, and is exactly the stabiliser of x in G. □

Proposition 6.4 (Actions as Representations). An action of a Lie group G on a manifold
M induces a group homomorphism ρ : G→ Diff(M), the group of all diffeomorphisms of M .
Conversely, any such homomorphism induces an action.

Proof. Let G act on M . Then any g ∈ G induces a function M → M : x 7→ g · x, which is
smooth since the action map is smooth. Moreover, this is invertible (with inverse g−1), and
so g induces a diffeomorphism on M . That we obtain a group homomorphism G→ Diff(M)
now follows from the definition of an action.

Conversely, given a group homomorphism ρ : G → Diff(M), define an action of G on M
as follows: g · x := ρ(g)(x). That this is an action follows from the definition of a group
homomorphism. □

We also would like to talk about the structure of the orbits, as well as the orbit space. We,
in fact, start with the orbit space. Since, these can be complicated, we first need to introduce
some conditions on a group action to “tame” the orbit space. This, requires introducing what
we mean by a “compact manifold”.

Definition 6.5 (Compact Space). A topological space X is compact if any open cover of
it has a finite subcover. ⋄

If the manifold can be “embedded” into Cartesian space as a closed and bounded subset,
then it follows from Heine-Borel that the manifold is compact. This proves to be a useful
way of telling when a manifold is compact instead of using open covers.

25



Examples 6.6 (Examples of Compact and Non-compact Spaces).

(1) The manifolds Sn and Tn are compact.

(2) Any finite set is a compact manifold.

(3) Rn is not compact.

(4) The cylinder S1 × R is not compact.

(5) GL(n;R) (for n > 0) and SL(n;R) (for n > 1) are not compact. (Why?) //

Recall that a continuous map sends compact sets to compact sets. There is another type
of map that does the opposite: requiring the pre-image of a compact set to be compact.

Definition 6.7 (Proper Map). Let f : X → Y be a continuous map between topological
spaces. Then f is proper if for any compact C ⊆ Y , the pre-image f−1(C) is compact in
X. ⋄

⋆Exercise 6.8. Any polynomial p ∈ P (R) is proper. However, polynomials in P (Rn) for
n > 1 are generally not proper.

We will use the following theorem without proof.

Theorem 6.9 (Bolzano-Weierstrass). Let M be a manifold and C ⊆M . Then C is compact
if and only if for any sequence (xn) in C, there is a convergent subsequence (xni

) whose limit
is contained in C.

⋆Exercise 6.10. Prove Theorem 6.9.

Definition 6.11 (Types of Actions). Let G be a Lie group acting on a manifold M . Denote
by χ : G×M →M ×M the smooth map sending (g, x) to (x, g · x).

(1) The action is free if all of the stabilisers are trivial. Equivalently, χ is injective.

(2) The action is effective if
⋂
x∈M Stab(x) = {1G}. Equivalently, the corresponding

representation ρ : G→ Diff(M) is injective.

(3) The action is transitive if M is the only orbit; that is, for any x, y ∈M , there exists
g ∈ G such that y = g · x. Equivalently, χ is surjective.

(4) The action is proper if χ is proper. ⋄

Example 6.12 (Group Multiplication). A Lie group G acts on itself via left and right
multiplication. These actions are free and transitive. //

Example 6.13 (A Non-Effective Action). Any action of a non-trivial group on a point is
non-effective. For a more complicated example, O(n) acts on R by (g, x) 7→ det(g)x; this
action is not effective for n > 1. //
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Example 6.14 (Rotations & Reflections). O(n) acts on Rn by rotations and reflections:
given A ∈ O(n), this matrix sends the standard orthonormal basis of Rn to the columns of
A, which recall is an orthonormal basis. If A ∈ SO(n), then A is a rotation (why?). In either
case, any (n− 1)-sphere centred at the origin is an orbit of this action. Thus, restricting the
action to such a sphere yields a transitive action. //

Proposition 6.15 (Actions of Compact Groups are Proper). Any action of a compact Lie
group is proper.

Proof. Let G be a compact Lie group acting on a manifold M . We need to show that
the map Φ: G × M → M × M sending (g, x) to (x, g · x) is proper. Fix a compact set
C ⊆ M × M . We need to show that Φ−1(C) is compact. By Bolzano-Weierstrass, it is
enough to show that any sequence (gn, xn) ∈ Φ−1(C) has a convergent subsequence (gni

, xni
)

with limit contained in Φ−1(C). Fix a sequence (gn, xn) ∈ Φ−1(C). Then Φ(gn, xn) ∈ C;
in particular, (xn) ∈ pr1(C) ∈ M . Since continuous maps send compact sets to compact
sets, pr1(C) is compact. By Bolzano-Weierstrass applied to pr1(C), the sequence (xn) has
a convergent subsequence (xni

) that converges to some x ∈ pr1(C), and similarly since G
is compact, the sequence (gni

) has a convergent subsequence (gnij
) that converges to some

g ∈ G. Thus (gnij
, xnij

) converges to (g, x) ∈ G ×M ; we only need to show that this is in
Φ−1(C). However, Φ is continuous and C closed, and so Φ−1(C) is closed. Since (gnij

, xnij
)

is contained in Φ−1(C), its limit is also. □

Quotient Topologies. We next want to consider the orbit space of a Lie group action.
These are naturally topological spaces, however, we need to describe how.

Definition 6.16 (Quotient Topology). Let X be a topological space, and ∼ an equivalence
relation on it. We define a topology on X/∼, the quotient set, as follows: let π : X → X/∼
be the quotient map sending x to its equivalence class [x]. A subset U ⊆ X/∼ is open if the
preimage π−1(U) is open in X. We call this the quotient topology. ⋄

Exercise 6.17. Prove that the quotient topology is in fact a topology.

From now on, we can assume that the orbit space of a Lie group action is equipped with
the quotient topology.

Example 6.18 (GL(n;R)). Consider GL(n;R) acting on Rn be matrix multiplication. Its
orbit space consists of two points (why?). The topology, however, is non-Hausdorff: the open
sets consist of the empty set, the complement of [0], and the whole quotient. //

When is an orbit space Hausdorff? To answer this, we first obtain a crucial property of
proper maps.

Definition 6.19 (Open and Closed Maps). Let f : X → Y be a continuous map. Then f is
open/closed if the image of every open/closed set is open/closed. ⋄
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Proposition 6.20 (Proper Maps are Closed). Proper continuous maps between manifolds
are closed.

Proof. Fix a proper continuous map f : M → N , and a closed set C ⊆ M . To show that
f(C) is closed, we show that every convergent sequence in f(C) achieves its limit in f(C).
Fix a sequence (yn) in f(C) that converges to y ∈ N . Then y is in the closure of f(C).
Let K be a compact neighbourhood of y. Then it follows from the definitions that there
exists n0 ∈ N such that K contains all yn for n ≥ n0; without loss of generality, assume
that K contains all yn. There exists a sequence (xn) in C ∩ f−1(K) such that f(xn) = yn
for each n. Moreover, since f is proper, f−1(K) is compact, and since C is closed, so
is C ∩ f−1(K). Thus, by Bolzano-Weierstrass, there is a subsequence (xni

) of (xn) that
converges to x ∈ C ∩f−1(K). By continuity, yni

= f(xni
) converges to f(x), and since limits

of sequences in Hausdorff spaces are unique, it follows that f(x) = y. But f(x) ∈ f(C),
which completes the proof. □

Lemma 6.21. The quotient map of a Lie group action is open.

Proof. Let G be a Lie group acting on a manifold M , and let π : M → G⧹
M be the quotient

map. Fix an open set U ⊆M . To show that π(U) is open, we must show that π−1(π(U)) is
open. However,

π−1(π(U)) =
⋃
g∈G

g · U

where g · U := {g · x ∈ M | g ∈ G, x ∈ U}. By Proposition 6.4, each g acts by diffeomor-
phisms, and so g · U is open for each g, and thus π−1(π(U)) is a union of open sets, and
hence open. □

Exercise 6.22. A topological spaceX is Hausdorff if and only if the diagonal map ∆: X →
X ×X : x 7→ (x, x) has closed image. (We typically call this image the diagonal.)

Proposition 6.23 (Hausdorff Orbit Space). A proper Lie group action has a Hausdorff orbit
space.

Proof. Let a Lie group G act on a manifold M properly, and let π : M → G⧹
M be the

quotient map. By Proposition 6.20, the image of the map χ : G ×M → M ×M sending
(g, x) to (x, g · x) is closed (since G×M is closed). Define Π: M ×M →

(
G⧹
M

)
×
(
G⧹
M

)
by Π(x, y) := (π(x), π(y)). By Lemma 6.21, π is open, from which it follows that Π is
open (check this!). Thus, Π sends the complement of the image of χ to an open set W in(
G⧹
M

)
×

(
G⧹
M

)
; we claim this is the complement of the diagonal of

(
G⧹
M

)
×

(
G⧹
M

)
,

which would complete the proof.

A point ([x], [y]) is in W if and only if (x, y) /∈ im(χ) if and only if there does not exist
g ∈ G such that y = g · x if and only if [x] ̸= [y] if and only if ([x], [y]) is not in the diagonal.
This completes the proof. □
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Exercise 6.24 (Second Countable Orbit Space). Show that the orbit space of a proper Lie
group action is second-countable.

We now want to go one step further and see when we actually get a smooth manifold as
an orbit space.

Theorem 6.25 (Quotient Manifold Theorem). The orbit space of a proper and free Lie
group action obtains a unique smooth manifold structure induced by the original manifold.

Presentation 3. Prove Theorem 6.25.

We will unravel what is meant by “obtains” and “induces” soon.

Exercise 6.26. LetG be a Lie group with Lie subgroupH. Show thatH⧹
G is a smooth man-

ifold. (These manifolds are called homogeneous manifolds; they are important, showing
up in many different places in geometry.)

29



Week 07: Tangent Bundles

You may remember from calculus that tangent lines/planes to graphs of functions are
intimately connected to their derivatives. How can we generalise this idea?

Tangent Vectors.

Definition 7.1 (Tangent Vectors). Let M be a manifold and x ∈ M . A derivation at
x of C∞(M) (recall that this is the ring of smooth real-valued functions) is a linear map
v : C∞(M) → R that satisfies Leibniz’ Rule (i.e. the product rule):

v(fg) = f(x)v(g) = g(x)v(f).

Denote the set of all derivations at x of C∞(M) by TxM , called the tangent space of M
at x. ⋄

Exercise 7.2. Show that TxM is a vector space.

To explore what these tangent vectors really look like, we will need some further defini-
tions.

Definition 7.3 (Pullbacks and Pushforwards). Let M and N be manifolds, fix x ∈M , and
let F : M → N be smooth. For any f ∈ C∞(N), define the pullback of f by F to be the
function F ∗f ∈ C∞(M) given by

F ∗f(x) := f ◦ F (x).
For any v ∈ TxM , define the pushforward of v by F to be F∗v ∈ TF (x)N defined for
f ∈ C∞(N) by

F∗v(f) := v(F ∗f). ⋄

Exercise 7.4. Show that F∗v in Definition 7.3 is indeed a tangent vector in TF (x)N .

Remark 7.5. The pushforward F∗ is also denoted dF and TF in the literature. ⌟

Exercise 7.6. Let F : M → N be a smooth map between manifolds, x ∈ M , φ : U → Ũ ⊆
Rm a chart about x, ψ : V → Ṽ ⊆ Rn a chart about F (x), and F̃ = ψ◦F ◦φ−1 the associated
representative of F using charts. Then on TxM ,

F∗ = ψ∗ ◦DF̃ |φ(x) ◦ φ−1
∗ .

Now let M be a manifold, x ∈ M , v ∈ TxM , and let φ : U → Ũ ⊆ Rm be a chart about
x. Then φ is a diffeomorphism (why?), and it suffices to explore φ∗v. To this end, we need
some lemmas.

Lemma 7.7. Let x0 ∈ Rm and v ∈ Tx0Rm. If c : Rm → R is constant, then v(c) = 0.

Proof. Since v is linear, it suffices to show this for c = 1. In this case,
v(1) = v(1 · 1) = 1 · v(1) + 1 · v(1) = 2v(1),

from the claim follows. □
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Notation 7.8. On Rm, denote by ∂i the ith partial derivative operator ∂
∂qi

where qi is the
ith coordinate function (sending x = (x1, . . . , xm) to xi ∈ R). In differential geometry, it is
customary to use superscripts for coordinate functions in this way. ⋄

Lemma 7.9. Let x0 ∈ Rm and v ∈ Tx0(Rm). Then

v =
m∑
i=1

vi∂i|x0

where vi := v(qi).

Proof. Fix f ∈ C∞(Rm). Applying the right-hand side to f yields
m∑
i=1

v(qi)∂i|x0f =
m∑
i=1

vi(∂if)(x0). (2)

On the other hand, by Taylor’s Theorem (see the appendices of [Lee13]), there exist
gi ∈ C∞(M) such that gi(x0) = 0 for each i and

f(x) = f(x0) +
m∑
i=1

∂if(x0)(q
i(x)− qi(x0)) +

m∑
i=1

gi(x)(q
i(x)− qi(x0)).

Applying v:

v(f) = 0 +
m∑
i=1

∂if(x0)(v(q
i)− v(qi(x0))) +

m∑
i=1

v(gi · (qi − qi(x0)))

=
m∑
i=1

v(qi)∂i|x0f +
m∑
i=1

(gi(x0)v(q
i) + v(gi) · (qi(x0)− qi(x0)))

where the last term vanishes, leaving the right-hand side of Equation (2). □

This is a good opportunity to introduce Einstein notation.

Notation 7.10 (Einstein Notation). Instead of writing something like v =
∑m

i=1 v
i∂i|x0 ,

we will drop the sum and understand that when a term contains an index, such as i, as a
superscript and as a subscript, then we sum over this index (the index set being understood
from the context). Thus, in the statement of Lemma 7.9, we could write v = vi∂i|x0 instead
of using the sum. As another example, if x = (x1, . . . , xn) and y = (y1, . . . , yn), the dot
product of x and y can be written xiyi. Thus we can view raising the index i from a
subscript to a superscript as taking the transpose of the column matrix representing x. ⋄

⋆Exercise 7.11. Let M be a manifold and fix x0 ∈ M . Denote by (viφ∂i

∣∣∣
φ(x0)

) the family

of derivations of C∞(Rm) at φ(x0) as φ runs over all charts about x0, and such that if
φ : U → Ũ and ψ : V → Ṽ are two charts about x0 with transition function F̃ : Ũ → Ṽ , then

DF̃ |φ(x0)(viφ∂i|φ(x0)) = viψ∂i|ψ(x0).
31



Show that these form a linear space, denoted Vx0 , which is naturally linearly isomorphic to
Tx0M . Consequently, if v ∈ Tx0M and φ and ψ are two charts about x0 with transition
function F̃ , then ψ∗v = DF̃ |ψ(x0)(φ∗v).

Corollary 7.12. If M is a manifold, x ∈ M , and φ a chart about x, then φ∗ is a linear
isomorphism from TxM to Tφ(x)Rm. In particular, TxM is m-dimensional.

Exercise 7.13. Prove Corollary 7.12.

There is a more geometric way of defining TxM .

Definition 7.14 (Tangent Vector II). Let M be a manifold and fix x ∈ M . Let Cx be the
family of all smooth curves γ : R → M such that γ(0) = x. Define an equivalence relation
on Cx as follows: γ1 ∼ γ2 if there exists a chart φ : U → Ũ about x such that

d

dt

∣∣∣
t=0

(φ ◦ γ1) =
d

dt

∣∣∣
t=0

(φ ◦ γ2). ⋄

⋆Exercise 7.15. Show that ∼ in Definition 7.14 is indeed an equivalence relation, and
independent of the chart φ chosen (you may want to look at ⋆Exercise 7.11). Then show
that there is a natural bijection from C/∼ to TxM .

Definition 7.16 (Tangent Bundle). Given a manifold M , define the tangent bundle TM
as a set to be the disjoint union ∐

x∈M

TxM.

Let τ : TM →M : v 7→ x for v ∈ TxM be the projection sending a vector to the point above
which it is defined. ⋄

Proposition 7.17 (Tangent Bundles are Manifolds). Let M be an m-manifold. Then TM
is a 2m-manifold.

⋆Exercise 7.18. Prove Proposition 7.17.

Example 7.19 (Tangent Bundle to S1). TS1 is diffeomorphic to the cylinder S1 × R. //

Not every manifold has this nice product structure (globally).

Example 7.20 (Tangent Bundle to S2). The tangent bundle to the 2-sphere is not diffeo-
morphic S2 × R2. //

Exercise 7.21 (Tangent Bundle to a Product). If M1, . . .Mk are manifolds, show

T (M1 × · · · ×Mk) ∼= TM1 × . . . TMk.

Proposition 7.22 (Properties of the Pushforward). Let F : M → N and G : N → P be
smooth maps of manifolds. Then
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(1) (G ◦ F )∗ = G∗ ◦ F∗,

(2) (idM)∗ = idTM ,

(3) if F is a diffeomorphism, then F∗ is invertible and (F∗)
−1 = (F−1)∗, and

(4) F∗ : TM → TN is smooth. Thus if F is a diffeomorphism, so is F∗.

⋆Exercise 7.23. Prove Proposition 7.22.
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Week 08: Global Derivations

One benefit of tangent bundles is that it allows us to discuss derivatives of smooth maps
between manifolds in a coordinate-free way. A second benefit is it provides a natural method
of discussing vector fields on manifolds.

Definition 8.1 (Global Derivations). Let M be a smooth manifold. A global derivation
of C∞(M) is a linear map X : C∞(M) → C∞(M) satisfying Leibniz’ Rule: for all f, g ∈
C∞(M),

X(fg) = fX(g) + gX(f).

Denote the set of all global derivations by DerC∞(M). For x ∈ M and X ∈ DerC∞(M),
denote by X|x the map C∞(M) → R sending f to (Xf)(x). ⋄

Exercise 8.2. DerC∞(M) is a (left) C∞(M)-module: given a global derivation X and
f ∈ C∞(M), the product

fX : g 7→ fXg : x 7→ f(x)(Xg)(x)

is a global derivation.

Exercise 8.3. For any global derivation X and x ∈M , X|x ∈ TxM .

Example 8.4 (Coordinate Global Derivation). On Rm, the differential operator ∂i : C∞(Rm) →
C∞(Rm) : f 7→ ∂if , sending f to its ith partial derivative, is a global derivation, called a
coordinate global derivation. //

Definition 8.5 (Pushforward of a Global Derivation by a Diffeomorphism). Let M and N
be manifolds, X ∈ DerC∞(M), and F : M → N a diffeomorphism. The pushforward of
X by F is the global derivation F∗X defined by F∗X(f) := (F−1)∗ (X(F ∗f)) . ⋄

Note that we needed F to be a diffeomorphism in Definition 8.5. While it is possible
to push forward global derivations by certain types of smooth maps more general than
diffeomorphisms, it remains not well-defined for an arbitrary smooth map.

Exercise 8.6. Confirm that F∗X in Definition 8.5 is indeed a global derivation.

Proposition 8.7. For any v ∈ TxM , there exists X ∈ DerC∞(M) such that v = X|x.

Proof. Fix v ∈ TxM , and let φ : U → Ũ ⊆ Rm be a chart about x. By Lemma 7.9,

φ∗v = vi∂i|φ(x).

Let b : M → R be a smooth bump function equal to 1 on an open neighbourhood V of x
such that V ⊆ U , with support supp(b) := {x ∈M | b(x) ̸= 0} contained in U . Define
X := bφ−1

∗ (vi∂i). For any f ∈ C∞(M), we have

Xf = bφ∗(vi∂i((φ
−1)∗f).
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This is linear in f , smooth on M (why?), and so we only need to confirm Leibniz’ Rule. Let
g also be in C∞(M).

X(fg) = vibφ∗ ((φ−1)∗f∂i((φ
−1)∗g) + (φ−1)∗g∂i((φ

−1)∗f)
)
= fXg + gXf.

Thus, X ∈ DerC∞(M).

Finally, for any f ∈ C∞(M),

X|xf = b(x)(vi∂i((φ
−1)∗f)(φ(x)))

= vi∂i|φ(x)((φ−1)∗f)

= φ∗v((φ
−1)∗f)

= vf.

Thus, X|x = v. □

Definition 8.8 (Smooth Section). A smooth section of a tangent bundle TM is a map
σ : M → TM so that τ ◦ σ = idM . ⋄

Theorem 8.9 (Global Derivations are Smooth Sections). DerC∞(M) is exactly the set of
smooth sections of TM , where X ∈ DerC∞(M) is defined as a section via x 7→ X|x.

⋆Exercise 8.10. Prove Theorem 8.9.

Remark 8.11 (Vector Fields). A vector field is a global derivation X that admits a local
flow; that is, for every point x ∈ M there is a curve γ : (−ε, ε) → M for some ε > 0 such
that γ(0) = x and dγ

dt
= X|x, and these so-called integral curves fit together into a smooth

family. It turns out that every global derivation is a vector field. This follows from the
existence and uniqueness theorem of first order differential equations. For this reason, we
will often call global derivations on a manifold vector fields. However, on a space such as
[0,∞), where the boundary point 0 does not allow for non-trivial integral curves at that
point, it is no longer true that every global derivation is a vector field. ⌟
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Week 09: Lie Brackets & Rank

Lie Brackets. In this subsection we will focus on vector fields (i.e. global derivations)
on a manifold M ; denote vector fields on M by vect(M). In general, given vector fields
X, Y ∈ vect(M), the map f 7→ X(Y f) is not a vector field:

Example 9.1 (XY is not a Vector Field). Consider d
dx

d
dx
x5 = 20x3. Using the fact that

x5 = x2 · x3, we can test Leibniz’ Rule: if d
dx

d
dx

were a vector field, then 20x3 would be equal
to x2 d

dx
d
dx
x3 + x3 d

dx
d
dx
x2 = 6x3 + 2x3 = 8x3, which it is not. //

However, it turns out there is an easy fix to this.

Definition 9.2 (Lie Bracket). Let X, Y ∈ vect(M). The Lie bracket (of vector fields) is
the assignment to each f ∈ C∞(M) the smooth function X(Y (f))− Y (X(f)). ⋄

Lemma 9.3. The Lie bracket of two vector fields is a vector field.

Proof. Fix X, Y ∈ vect(M) and f, g ∈ C∞(M). It is straightforward to check that [X, Y ] is
a linear operator from C∞(M) to itself, so we only need to check Leibniz’ Rule.

[X, Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY g + gY f)− Y (fXg + gXf)

= XfY g + fXY g +XgY f + gXY f − Y fXg − fY Xg − Y gXf − gY Xf

= f [X, Y ]g + g[X, Y ]f. □

Proposition 9.4 (Properties of the Lie Bracket of Vector Fields). Let X, Y, Z ∈ vect(M).

(1) (Bilinearity) [X, Y ] is linear in both X and Y .

(2) (Antisymmetry) [X, Y ] = −[Y,X].

(3) (Jacobi Identity) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Exercise 9.5. Prove Proposition 9.4.

Example 9.6 (Coordinate Computations for Lie Brackets). On Rm, we have that [∂i, ∂j] = 0
for all i, j; this is a consequence of Clairaut’s Theorem. This does not hold for more general
vector fields, however, such as X = y∂1 and Y = −x∂2. Indeed, for f ∈ C∞(Rm), the Lie
bracket [X, Y ]f is (−y∂2 + x∂1)f . Notice that this is equal to (X(−x)∂2 − Y (y)∂1)f . This
suggests the following formula for computing the Lie bracket in coordinates: let X = X i∂i
and Y = Y j∂j where X i, Y j ∈ C∞(M). Then

[X, Y ] = X i∂i(Y
j)∂j − Y j∂j(X

i)∂i. (3)

This allows us to do explicit local computations of the Lie bracket on manifolds via charts. //

Exercise 9.7. Prove Equation (3).
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The Lie bracket gives a type of “anti-commutative multiplicative” structure to the set
vect(M). This type of structure is called a “Lie algebra”.

Definition 9.8 (Lie Algebra). A (real) Lie algebra A is an R-vector space equipped with
a multiplication A × A → A : (a, b) 7→ [a, b], called the Lie bracket of A, in which [·, ·]
is bilinear (linear in each slot), is antisymmetric ([a, b] = −[b, a]), and satisfies the Jacobi
Identity (see Item 3 of Proposition 9.4). ⋄

Example 9.9 (The Lie Algebra of Vector Fields). Given a manifoldM , vector fields vect(M)
form a Lie algebra with the Lie bracket. //

Exercise 9.10. Show that the vector space R3 equipped with the cross product × is a Lie
algebra.

It turns out that we can put a natural Lie algebra structure onto the tangent space at the
identity of a Lie group. To prove this, we need a definition and some results.

Definition 9.11 (Left-Invariant Vector Field). Let G be a Lie group, and let left multipli-
cation by a fixed h ∈ G be denoted Lh : G → G : g 7→ hg. A vector field X ∈ vect(G) is
left-invariant if ((Lh)∗X)|g = X|g for all g, h ∈ G. ⋄

Proposition 9.12 (Left-Invariant Vector Fields). Let G be a Lie group. Denote by g the
set of all left-invariant vector fields on G. Then g is a Lie algebra with respect to the Lie
bracket on vector fields.

⋆Exercise 9.13. Prove Proposition 9.12.

Corollary 9.14. The tangent space at the identity of a Lie group has a natural Lie algebra
structure.

Proof. Let G be a Lie group and let ξ ∈ T1GG. Then ξ induces a left-invariant vector field Xξ

by defining Xξ|g := (Lg)∗ξ (convince yourself that this is actually a vector field). Conversely,
any left-invariant vector field is completely determined by its value at 1G. Thus we have a
linear isomorphism E from g to T1GG. We define a Lie bracket on T1GG as follows: given
ξ, ζ ∈ T1GG,

[ξ, ζ] := [Xξ, Xζ ]|1G .
The required bilinearity, anti-symmetry, and satisfaction of the Jacobi identity now follow
from Propositions 9.4 and 9.12. □

In practice, we often identify g with T1GG.

Corollary 9.15. If G is a Lie group, then TG is diffeomorphic to G× g.

Proof. The map TG → G × g : v 7→ (τ(v), (Lτ(v)−1)∗v) is smooth, and has inverse (g, ξ) 7→
(Lg)∗ξ, which is also smooth. □
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The benefit of Corollary 9.14 is that we now have an easy way to find the Lie algebras
of many of our matrix Lie group examples.

Examples 9.16 (Examples of Matrix Lie Algebras).

(1) Let [aij(t)] be a curve in GL(n;R) such that [aij(0)] = In. Its derivative at t = 0 is
exactly

[
d
dt

∣∣∣
0
aij

]
, which is in Mat(n;R). Thus the Lie algebra of GL(n;R), denoted

gl(n;R), is a linear subspace of Mat(n;R). But for any B ∈ Mat(n;R), the curve
In + tB is in GL(n;R) for small t by continuity of the determinant, and it satisfies
d
dt

∣∣∣
t=0

(In + tB) = B. Since dim gl(n;R) = n2 = dimMat(n;R), we conclude that
gl(n;R) = Mat(n;R). In fact, the Lie bracket is exactly the commutator of matrices
[A,B] := AB −BA.

(2) Since SL(n;R) is a Lie subgroup of GL(n;R), its Lie algebra will be a Lie subalgebra
of gl(n;R), denoted sl(n;R). Suppose A ∈ sl(n;R). Then for small t, the curve
In + tA is in SL(n;R) provided det(In + tA) = 1. Differentiating,

0 =
d

dt

∣∣∣
t=0

det(In + tA)

=
d

dt

∣∣∣
t=0

(
tn det

(
1

t
In + A

))
=

d

dt

∣∣∣
t=0

(tnp(1/t))

where p is the characteristic polynomial of −A, given by cnλn+cn−1λ
n−1+· · ·+c1λ+c0,

where cn = 1, cn−1 is the trace tr(−A), etc. In particular, the derivative above is
equal to tr(−A), and so elements of sl(n;R) must be traceless (i.e. have trace equal
to 0). We will soon have the ability to show that sl(n;R) are exactly the traceless
matrices.

(3) Again, since O(n) is a Lie subgroup of GL(n;R), its Lie algebra will be a Lie subalge-
bra of gl(n;R). Note that elements of O(n) have determinant ±1, and by continuity
of the determinant, we can conclude that SO(n) is just the collection of connected
components of O(n) whose determinant is 1. In particular, both O(n) and SO(n)
have the same Lie algebra, denoted so(n). We know that if A ∈ so(n), then for small
t, In + tA ∈ O(n). In particular,

In = (In + tA)(In + tA)t.

Applying d
dt

∣∣∣
t=0

, it follows that At = −A; that is, A is anti-symmetric. Again, we will
soon have the ability to show that so(n) are exactly the anti-symmetric matrices.

//

Exercise 9.17.

(1) Show that the Lie algebra of U(n), denoted u(n), is made up of skew-Hermitian
matrices; that is, matrices [aij] in which aij ∈ C and aij = −aji for all i and j.
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(2) Show that the Lie algebra of SU(n), denoted su(n), is made up of traceless skew-
Hermitian matrices.

Rank .

Definition 9.18 (Rank). Let F : M → N be a smooth map, and fix x ∈ M . The rank of
F at x is the rank of F∗|x : TxM → TF (x)N as a linear map. ⋄

Remark 9.19. Given a smooth map F : M → N , and a fixed x ∈ M with chart φ : U →
Ũ ⊆ Rm about x and ψ : V → Ṽ ⊆ Rn about F (x), let F̃ := ψ ◦ F ◦ φ−1. Then the rank of
F at x is exactly the rank rk

(
DF̃ |x

)
. ⌟

Recall that a linear transformation G : V → W has maximal rank if

rk(G) = min{dimV, dimW}.

Definition 9.20 (Immersions and Submersion). Let F : M → N be a smooth map such
that it has maximal rank at every point. If dimM ≤ dimN , then F is an immersion. If
dimM ≥ dimN , then F is a submersion. ⋄

Proposition 9.21. Let F : M → N be smooth, and fix x ∈ M . If F∗|x is injective (resp.
surjective), then there is an open neighbourhood W of x such that F |W is an immersion
(resp. submersion).

Proof. Let φ : U → Ũ ⊆ Rm and ψ : V → Ṽ ⊆ Rn be charts about x and F (x), resp., and
let F̃ = ψ ◦F ◦φ−1. By Remark 9.19, rk

(
DF̃ |φ(x)

)
is the rank of F at x. Suppose DF̃ |φ(x)

has maximal rank (which is equivalent to it being injective if dimM ≤ dimN , or surjective
if dimM ≥ dimN). It suffices to show that having maximal rank is an “open condition”;
that is, DF̃ has maximal rank at each point in an open neighbourhood of φ(x).

Let A be an n ×m matrix with rank k. There is a k × k submatrix, B, of A such that
detB ̸= 0. Indeed, since rk(A) = k, there exist k linearly independent columns of A; let C
be the corresponding n× k submatrix of A made up of these columns. Then rk(C) = k, and
so C must have k linearly independent rows; let B be the k × k submatrix of C (and hence
A) made up of these rows. Then rk(B) = k, and so it is non-degenerate. The determinant of
B is non-zero, and since determinants are continuous, along with the appropriate projection
maps, there is an open neighbourhood of A in Rmn on which the k × k formed used in the
same columns and rows of as C remains non-degenerate; that is, on this open neighbourhood,
all n×m matrices have rank at least k.

If A has maximal rank k = min{m,n}, then all matrices in this open neighbourhood have
rank at most k, and so we conclude that the rank of all of them is k (which is maximal for
all of them).

Let D : Ũ → Rmn be the map sending y ∈ Ũ to DF̃ |y. By hypothesis, D(φ(x)) has
maximal rank, and so there is an open neighbourhood W ′ of D(φ(x)) in Rmn whose elements
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all have maximal rank. Since D is continuous, W := D−1(W ′) is open in Ũ , completing the
proof. □

Examples 9.22 (Examples of Immersions and Submersions). Let M be a manifold. Then
τ : TM → M is a surjective submersion. If M1, . . . ,Mk are smooth manifolds, then the
projection maps pri :

∏
jMj → Mi is a surjective submersion. If γ : R → M is a smooth

curve such that d
dt

∣∣∣
t=t0

γ ̸= 0 for each t0 ∈ R, then γ is an immersion (not necessarily

injective). In particular, the image of γ has no corners nor cusps. //

We can now a consequence of the Inverse Function Theorem for smooth manifolds.

Exercise 9.23. Let M and N be manifolds of the same dimension. If F : M → N has
maximal rank at each point (i.e. is nonsingular), show that for each x ∈M there is an open
neighbourhood U of x such that F |U is a diffeomorphism onto its image. We call such maps
local diffeomorphisms.

We can also restate the Quotient Manifold Theorem (see Theorem 6.25).

Theorem 9.24 (Quotient Manifold Theorem). Let G be a Lie group acting freely and prop-
erly on a manifold M . There exists a unique smooth structure on the orbit space G⧹

M making
it into a manifold of dimension dimM − dimG such that the quotient map π : M → G⧹

M

is a surjective submersion.

40



Week 10: Submanifolds & The Rank Theorem

Submanifolds, Dimensions of Lie Groups, and the Topology of Lie Groups. Sub-
objects are mathematical entities that show up all of the time in all areas of mathematics:
subsets, subgroups, subrings and ideals, subspaces. For manifolds, the same is true, except
these “submanifolds” can have slightly different features that one needs to be careful of.

Definition 10.1 (Submanifolds). Let F : M → N be an immersion. We call the image of F
an immersed submanifold of N . If F is also a homeomorphism onto its image, then we
call the image of F an embedded submanifold of N . If furthermore F is a proper map,
then we call it a proper embedding and its image a properly embedded submanifold
of N . ⋄

Examples 10.2 (Examples of Submanifolds). A smooth curve γ : R → R2 such that
dγ
dt

∣∣∣
t=t0

̸= 0 for each t0 is an immersion, and thus an immersed submanifold, even if the
curve is self-intersecting. Thus, the topology on the submanifold is not necessarily equal
to the subspace topology coming from R2; instead, the topology comes from the domain.
Even if the map is injective, the two different topologies may not match: consider a figure-8
parametrised in a non-intersecting way.

Another famous example, which is relevant for this class, is the irrationally-sloped line in
T2. One can construct T2 as the quotient space R2/Z2, where an element (a, b) ∈ Z2 acts on
an element (x, y) ∈ R2 by (a, b) · (x, y) := (x+a, y+ b). Let α ∈ R∖Q, and consider the line
y = αx in R2. This, in fact, is a subgroup of R2 under addition. It descends to a subgroup
of T2 via the quotient map π : R2 → T2 = R2/Z2, which is dense in T2. More precisely, let
f : R → T2 be the curve t 7→ π(αt). Then im(f) = T2. //

Presentation 4. Prove the statement in Examples 10.2 that im(f) is dense, injectively-
immersed submanifold of T2 that is also a subgroup, and show that T2/im(f) has the trivial
topology. (See [Lee13, Example 4.20].)

An important case of submanifolds are level sets of smooth functions.

Definition 10.3 (Regular and Critical Points and Values). Let F : M → N be a smooth
map, and fix x ∈ M . If F∗|x is surjective, then x is a regular point; otherwise, it is a
critical point. Given y ∈ N , if the level set F−1(y) comprises only regular points, then we
say that y is a regular value and F−1(y) is a regular level set; otherwise, y is a critical
value. ⋄

Theorem 10.4 (Regular Level Sets are Submanifolds). Let F : M → N be smooth, and let
y ∈ N be a regular value. The regular level set F−1(y) is a properly embedded submanifold
of M of dimension k = dimM − dimN .

Presentation 5. Prove Theorem 10.4.

Let us now go back to finding the Lie algebras of some of the classical Lie groups.
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Examples 10.5 (Examples of Matrix Lie Algebras II). Recall that sl(n;R) is a linear sub-
space of all traceless matrices of gl(n;R). It has the same dimension as SL(n;R) = det−1(1)

where det : GL(n;R) ∼= Rn2 → R. By Exercise 10.6 below, the critical points of det are
all in its zero set. Thus 1 is a regular value of det, and so by Theorem 10.4, SL(n;R)
has dimension n2 − 1. Similarly, since trace is a linear map Mat(n;R) → R, and traceless
matrices are the zero set of the trace map, it follows that traceless matrices form a linear
subspace of dimension n2 − 1 in Mat(n;R). By Examples 9.16, we conclude that sl(n;R)
are exactly the traceless matrices:

sl(n;R) = {A ∈ Mat(n;R) | trA = 0}.

Turning to so(n), the linear map GL(n;R) → GL(n;R)2 sending A to (A,At) has maximal
rank. The multiplication map Mat(n;R)2 → Mat(n;R), by Exercise 10.7, has no critical
points in GL(n;R)2. So the identity matrix In is a regular value of the composition A 7→
(A,At) 7→ AAt. Moreover, by ⋆Exercise 10.8 below, this composition has image exactly
the positive-definite symmetric matrices, which is a submanifold of Mat(n;R) of dimension
1
2
(n2+n). By Theorem 10.4, the level set of In by the smooth map A 7→ AAt has dimension
n2 −

(
1
2
(n2 + n)

)
= 1

2
(n2 − n). Thus, SO(n) and O(n) have dimension 1

2
(n2 − n). But this is

exactly the dimension of the n×n anti-symmetric matrices. By Examples 9.16, we conclude
that so(n) is exactly the anti-symmetric matrices:

so(n) = {A ∈ Mat(n;R) | At = −A}. //

Exercise 10.6. Show that a square n × n matrix A is a critical point of det if and only if
its rank is less than n− 1.

Exercise 10.7. Find the critical points of the matrix multiplication map.

⋆Exercise 10.8. Show that the image of the map GL(n;R) → GL(n;R) sending A to AAt

is the subset of all n× n positive-definite symmetric matrices. This is in fact a submanifold
of dimension 1

2
(n2 + n).

Exercise 10.9. Complete Exercise 9.17, showing that u(n) comprises exactly the skew-
Hermitian matrices, and su(n) comprises exactly the traceless skew-Hermitian matrices.

Before moving onto the next subsection, we end this one with some facts about the
topology of some of the classical Lie groups.

Presentation 6 (Topology of O(n), SO(n), U(n), and SU(n)). Show that O(n), SO(n),
U(n), and SU(n) are compact, that SO(n), U(n), and SU(n) are connected, and that O(n)
has exactly two connected components in which the identity component is equal to SO(n).

Proposition 10.10 (Connectivity of GL(n;R)). The Lie group GL(n;R) has exactly two
connected components: the identity component GL(n;R)+ consisting of positive-determinant
matrices, and the second component GL(n;R)− consisting of negative-determinant matrices.

⋆Exercise 10.11. Prove Proposition 10.10.
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Smooth Maps with Constant Rank . One of the most important theorems in differential
geometry is the following.

Theorem 10.12 (Rank Theorem). Let F : M → N be smooth, where dimM = m and
dimN = n, and F has a constant rank of r at all points of M . For any x ∈ M , there exist
charts φ : U → Ũ about x and ψ : V → Ṽ about F (x) such that

(1) F (U) ⊆ V ,

(2) φ(x) = 0 and ψ(F (x)) = 0, and

(3) F̃ = ψ ◦ F ◦ φ−1 satisfies

F̃ (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0︸ ︷︷ ︸
n−r

) ∈ Rn

where (x1, . . . , xm) are coordinates in Rm.

Presentation 7. Prove Theorem 10.12.

Example 10.13. It follows from the proof of the Quotient Manifold Theorem that the
quotient map π : M → G⧹

M for a Lie group action G ⟳ M is a surjective submersion (and
hence has constant rank) if the action is free and proper. In particular, if H ≤ G is a closed
subgroup, then the quotient map G→ H⧹

G has constant rank. //

As an immediate corollary, submersions locally look like projection maps between carte-
sian spaces, and immersions locally look like injection maps between cartesian spaces. Here
is another immediate corollary.

Corollary 10.14 (Equivariant Rank Theorem). Let G be a Lie group acting on manifolds M
and N , and let F : M → N be a smooth equivariant map (recall that a map F is equivariant
if F (g · x) = g · F (x) for all g ∈ G and x ∈ M). Suppose the G-action on M is transitive.
Then F has constant rank. In particular, if F is a bijective equivariant map, then it is a
diffeomorphism.

Proof. It suffices to show that for arbitrarily chosen x1, x2 ∈ M , the ranks of F at x1 and
x2 are equal. Fix x1, x2 ∈ M . Since the action of G is transitive on M , there exists g ∈ G
such that x2 = g · x1. Let ρM be the representation of the G-action on M , and ρN be the
representation of the G-action on N . We have the following commutative diagram:

Tx1M

⟳

F∗|x1//

ρM (g)∗|x1
��

TF (x1)N

ρN (g)∗|F (x1)

��
Tx2M F∗|x2

// TF (x2)N

Since ρM(g) and ρN(g) are diffeomorphisms, they have ranks m and n, resp. Thus the rank
of F∗|x2 is equal to the rank of F∗|x1 .
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If F is additionally a bijection, then by the Rank Theorem, there exist local coordinates
so that it looks like the identity map between cartesian spaces. It follows from the Inverse
Function Theorem that F is a diffeomorphism. □

Example 10.15. Let G be a Lie group acting on a manifold M , and fix x ∈ M . The
map αx : G → M sending g to g · x has constant rank. Indeed, G acts on itself by left
multiplication, which is transitive. Since αx is smooth and equivariant, the Equivariant
Rank Theorem implies that αx has constant rank. //

Proposition 10.16. Let G ⟳ M be a Lie group action, and fix x ∈ M . The orbit G · x is
an immersed submanifold of M .

To prove this, we require a lemma.

Lemma 10.17. Let M , N , and P be smooth manifolds, and let π : M → N be a surjective
submersion. Given maps F : M → P and F ′ : N → P satisfying F = F ′ ◦ π, we have that F
is smooth if and only if F ′ is.

Exercise 10.18. Prove Lemma 10.17.

Proof of Proposition 10.16. Let H := Stab(x). By Example 10.13, the quotient map
π : G → H⧹

G is a surjective submersion. Let β : H⧹
G → M be the map sending gH to

g · x. By the Orbit Stabiliser Theorem, this map is a well-defined injection with image G · x,
and by Lemma 10.17, it is smooth. It follows from Example 10.15 that β has constant
rank. By the Rank Theorem, β must be an immersion. □

Presentation 8 (Orbit Stabiliser Theorem for Lie Group Actions). Let G ⟳M be a proper
Lie group action. Show that the orbits of the action are properly embedded submanifolds.
In fact, for any x ∈M with H = Stab(x), we have a diffeomorphism β : H⧹

G→ G · x.
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Week 11: Bochner’s Linearisation Theorem

As we have seen, a nice collection of group actions is given by matrix Lie groups acting
on a cartesian space. The goal of this section is to show that about a so-called “fixed point”
of a compact Lie group action on a manifold, the action is equivariantly diffeomorphic to a
linear one, and so in the effective case, this is precisely one of the linear matrix Lie group
actions (see Exercise 1.14). To get to this result, called Bochner’s Linearisation Theorem,
we must take several steps. The presentation here is expanded on that of [DK00, Section
2.2].

Invariant Neighbourhoods. We begin with a simple observation about compact spaces,
which is extremely important. For this purpose, define an open neighbourhood of a subset
S of a topological space X to be any open subset U of X that contains S.

Lemma 11.1 (Tube Lemma). Let X and Y be topological spaces with Y compact. Suppose
x0 ∈ X, and U is an open neighbourhood of the subset {x0} × Y ⊆ X × Y . There exists an
open neighbourhood V of x0 such that {x0} × Y ⊆ V × Y ⊆ U .

Proof. The map Y → X×Y sending y ∈ Y to (x0, y) is continuous, and since Y is compact,
the image {x0}×Y is compact. Since U is open, every point (x0, y) ∈ {x0}×Y is contained
in a basic open set Vy × Wy ⊆ U . Since {x0} × Y is compact, there is a finite subcover
{Vyi ×Wyi}ki=1 of {x0} × Y . The intersection V :=

⋂k
i=1 Vyi is open in X, and satisfies the

requirements of the lemma. □

We use this to show that for a compact Lie group action G ⟳ M , there are lots of G-
invariant open neighbourhoods about fixed points. A subset S of M is G-invariant if for
any x ∈ S and g ∈ G, the point g ·x ∈ S. A point x ∈M is a fixed point of the G-action
if Stab(x) = G.

Lemma 11.2 (Invariant Neighbourhoods). Let G ⟳ M be a compact Lie group action, let
x ∈ M be a fixed point, and let U be an open neighbourhood of x. There is a G-invariant
neighbourhood V of x contained in U .

Proof. Since that action map α : G×M →M : (g, x) 7→ g ·x is smooth, it is continuous, and
so α−1(U) is open in G×M . Since x is a fixed point, G× {x} ⊆ α−1(U). By Lemma 11.1,
there is an open neighbourhood W of x such that G × {x} ⊆ G ×W ⊆ α−1(U). Define
V := G ·W = α(G×W ) ⊆ U . Then V =

⋃
g∈G g ·W , and since G acts by diffeomorphisms,

each g ·W is open. Thus V is an open neighbourhood of V contained in U . Let y ∈ V and
g ∈ G. Then g · y = g(g′)−1(g′) · y where g′ · y ∈ W . Then g · y ∈ g(g′)−1 ·W ⊆ V . Thus V
is G-invariant. □

Induced Actions on Tangent Bundles. Let G be a Lie group acting on a manifold M ,
and let α : G ×M → M be the action map. Let gt be a curve in G such that g0 = 1G and
d
dt

∣∣∣
t=0
gt = ξ ∈ g. For a fixed x ∈M , we have the curve gt · x in M whose derivative at t = 0

is
d

dt

∣∣∣
t=0
gt · x =

d

dt

∣∣∣
t=0

(α(gt, x)) = α∗(ξ, 0) =: ξM |x.
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It follows from the definition of a tangent vector (using curves) that ξM |x is independent of
the curve gt used to define it (provided the velocity of gt at t = 0 is ξ). Moreover, this is
smooth in x, and so defines a vector field on M . We call it the induced vector field on
M by ξ. This gives us a linear map g → vect(M), often called the infinitesimal action
induced by G on M .

Now let xt be a smooth curve in M through a point x0 such that v = d
dt

∣∣∣
t=0
xt ∈ Tx0M ,

and fix g ∈ G. Then g · xt is a smooth curve in M , and

d

dt

∣∣∣
t=0
g · xt = g∗v;

here, the notation g∗ is shorthand for ρ(g)∗ where ρ : G → Diff(M) is the corresponding
representation to the action.

We thus have two actions: G acts on TM by g · v := g∗v and g “acts” on TV where ξ ∈ g
sends v ∈ TxM to v + ξM |x. Together, given a smooth curve (gt, xt) pairing the two curves
above in G×M , we have

d

dt

∣∣∣
t=0
α(gt, xt) = g∗v + g∗(ξM |x).

We end this subsection by coming up with a formula for g∗(ξM |x).

⋆Exercise 11.3 (Adjoint Action).

(1) Let G be a Lie group. Show that G acts on itself by conjugation: for a fixed g ∈ G,
we have a left action α(h, g) = Ch(g) := hgh−1 for any h ∈ G.

(2) Let gt be a smooth curve in G so that g0 = 1G and ξ = d
dt

∣∣∣
t=0
gt ∈ g. Define the

adjoint action of G on g to be for h ∈ G:

Adh(ξ) :=
d

dt

∣∣∣
t=0
Ch(gt) = (Lh)∗(Rh−1)∗ξ;

here, Rh−1 is right multiplication by h−1. Note that left multiplication and right
multiplication operators commute: Lh ◦Rh′ = Rh′ ◦Lh. Show that the adjoint action
is a left action of G.

(3) Let ht be a smooth curve in G such that h0 = 1G and d
dt

∣∣∣
t=0
ht = ζ ∈ g. Define the

infinitesimal adjoint action of g to be the “action”

ad(ζ, ξ) :=
d

dt

∣∣∣
t=0

Adht(ξ).

Show that ad(ζ, ξ) = [ζ, ξ].

Lemma 11.4. Let G ⟳ M be a Lie group action, ξ ∈ g, and h ∈ G. Then h∗(ξM) =
Adh(ξ)M .
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Proof. Let f ∈ C∞(M) and x ∈M .

(h∗(ξM))(f)(x) = (h−1)∗(ξM(h∗f))(x)

= ξM(h∗f)(h−1 · x)
= ξM |h−1·x(h

∗f).

On the other hand, if d
dt

∣∣∣
t=0
gt = ξ, then

Adh(ξ)M |x(f) =
(
d

dt

∣∣∣
t=0

(hgth
−1)

)
M

∣∣∣
x
f

=
d

dt

∣∣∣
t=0
f(hgth

−1 · x)

=
d

dt

∣∣∣
t=0
h∗f(gth

−1 · x)

= ξM |h−1·x(h
∗f).

Since x and f are arbitrary, this proves the desired equality. □

Exercise 11.5. Let x ∈ M be a fixed point of a Lie group action G ⟳ M . Then G acts on
TxM via linear isomorphisms by g · v = g∗v for all g ∈ G and v ∈ TxM .

Averaging over G. The next step is to find a way to make a function G-invariant. Recall
that a function f : M → R is G-invariant if f(g · x) = f(x) for all g ∈ G and all x ∈M .

Example 11.6 (Invariant Function for a Finite Group Action). Let a finite group Γ act on
a manifold M . Then Γ acts on C∞(M) as follows: given f ∈ C∞(M) and g ∈ Γ, denote by
g · f the function sending x to f(g−1 · x). Note that this is a left action:

g′ · (g · f)(x) = (g · f)((g′)−1 · x) = f(g−1 · ((g′)−1 · x)) = f((g′g)−1 · x) = (g′g · f)(x).

For a fixed f ∈ C∞(M), define

f :=
∑
g∈Γ

g · f : x 7→
∑
g∈Γ

f(g−1 · x).

Then f is Γ-invariant. Indeed, for a fixed x ∈M and g′ ∈ Γ,

f(g′ · x) =
∑
g∈Γ

f(g−1g′ · x) =
∑
g∈Γ

f(g−1 · x) = f(x),

since Γ acts on itself transitively by right multiplication. We call f the average of f over
Γ. //

We would like to extend this notion of averaging a function over a finite group to infinite
groups. To accomplish this, we need to use some measure theory, but this would take us
far outside the scope of this course. So we will use the following result without proof. (For
details, see [DK00, Section 3.13].)
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Theorem 11.7 (Haar Measure). Given a compact Lie group G, there is a measure µ, called
the (normalised) Haar measure, such that

∫
G
1 dµ = 1 and

∫
G
f(g) dµ =

∫
G
f(g′g) dµ for all

g′ ∈ G and f ∈ C∞(G). (We think of g here as the variable being integrated.)

We will typically denote integration with respect to the Haar measure by
∫
G
· dg. What

the last statement in the theorem means is that we can translate functions around via
multiplication on G and not change the result of the integration.

Given an action of the compact Lie group G on M and a function f ∈ C∞(M), define
the average of f over G, denoted f , by

f(x) :=

∫
G

f(g · x) dg.

This is a smooth G-invariant function on M (the proof of this will also be omitted). Of
course, now that we have the ability to average a real-valued function over G, we can do the
same for any vector-valued function by integrating one component at a time.

Exercise 11.8. Given x ∈ M , there is an open neighbourhood U of x, an open neighbour-
hood V of 0 ∈ TxM , and a diffeomorphism λ : U → V such that λ(x0) = 0 and λ∗|x = idTxM ;
here, we identify T0(TxM) with TxM itself.

Suppose that G ⟳ M is a compact Lie group action and x0 ∈ M is a fixed point.
By Exercise 11.8, there is an open neighbourhood U of x0, an open neighbourhood V of
0 ∈ TxM , and a diffeomorphism λ : U → V such that λ(x0) = 0 and λ∗|x0 = idTx0M .
By Lemma 11.2, we may assume without loss of generality that U is G-invariant. Define
λ : U → V by

λ(x) :=

∫
G

g∗λ(g
−1 · x) dg.

It turns out that, due to its definition, λ is not invariant; however, it is equivariant: for a
fixed g′ ∈ G:

λ(g′ · x) =
∫
G

g∗λ(g
−1g′ · x) dg

=

∫
G

(g′g)∗λ(g
−1 · x) dg

= (g′)∗

(∫
G

g∗λ(g
−1 · x) dg

)
= (g′)∗λ(x).

Now, for v ∈ Tx0M ,

λ∗v =

∫
G

g∗λ∗|g−1·x0(g
−1
∗ v) dg

and since x0 is a fixed point, g−1 · x0 = x0, and so the right-hand side above becomes∫
G
g∗λ∗|x0(g−1

∗ v) dg. But by Exercise 11.8, λ∗|x0 = idTx0M , and so this reduces further to∫
G
g∗g

−1
∗ v dg = v

∫
G
1 dg = v. That is, λ∗|x0 = idTx0M as well. By the Inverse Function

Theorem and Lemma 11.2, we may shrink U and V so that U remains invariant and so that
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λ is a diffeomorphism from U to V . Combining this with Exercise 11.5, we have just proven
the following.

Theorem 11.9 (Bochner Linearisation Theorem). Let G ⟳ M be a compact Lie group
action, and let x0 ∈ M be a fixed point. There is an equivariant diffeomorphism λ from an
invariant open neighbourhood U of x0 to an invariant open neighbourhood V of 0 ∈ Tx0M
equipped with the induced action (g, v) 7→ g∗v for g ∈ G and v ∈ Tx0M .
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Week 12: The Slice Theorem

We now want to push Bochner’s Linearisation Theorem beyond fixed points. The goal
is to show that for a compact Lie group action, there is an invariant neighbourhood of any
orbit that locally looks like the orbit crossed with one of the linear actions given by Bochner’s
theorem.

To this end, we begin by averaging inner products.

Invariant Inner Products.

Lemma 12.1. Let V be a vector space and ⟨·, ·⟩ an inner product on it. Let G be a com-
pact Lie group acting on V linearly. Then ⟨·, ·⟩G is a G-invariant inner product, called the
average of ⟨·, ·⟩ over G, where

⟨v, w⟩ :=
∫
G

⟨g · v, g · w⟩ dg.

Exercise 12.2. Prove Lemma 12.1.

Lemma 12.3. Let ⟨·, ·⟩ be an inner product on Rn. There is a linear change of coordinates
φ : Rn → Rn such that ⟨x, y⟩ = ⟨φ(x), φ(y)⟩Euc, where ⟨·, ·⟩Euc is the standard Euclidean
inner product.

Proof. There exists a positive definite symmetric matrix A such that ⟨x, y⟩ = xtAy for all
x, y ∈ Rn. By the spectral theorem, A is diagonalisable with real eigenvalues: A = PDP t

where P ∈ O(n) and D is a diagonal matrix whose entries are the eigenvalues of A. Since A
is positive definite, these eigenvalues are positive. Thus

√
A := P

√
DP t

is well-defined and symmetric, where
√
D is the diagonal matrix whose entries are the square

roots of the entries of D. Define φ(x) :=
√
Ax. Then

⟨φ(x), φ(y)⟩Euc = xt
√
A

t√
Ay = xtAy = ⟨x, y⟩,

where the second-last equality follows from the fact that
√
A is symmetric. □

What this means is that any inner product on Rn is the Euclidean one after a linear
change of coordinates.

Corollary 12.4. Let V be an n-dimensional vector space and ⟨·, ·⟩ an inner product on
it, and let G be a compact Lie group acting on V linearly. There exist coordinates on V
( i.e. a basis) such that V becomes identified with Rn and G acts orthogonally; that is, the
representation ρ : G→ GL(V ) = GL(n;R) has image in O(n). In particular, if the action is
effective, then G is (isomorphic to) a closed subgroup of O(n).

Proof. Let ⟨·, ·⟩G be the average of ⟨·, ·⟩ over G, which is an invariant inner product by
Lemma 12.1. By Lemma 12.3, there exist coordinates such that V can be identified with
Rn and ⟨·, ·⟩G can be identified with ⟨·, ·⟩Euc. In particular, ⟨g · x, g · y⟩ = ⟨x, y⟩ for all
x, y ∈ Rn and g ∈ G; that is, G acts orthogonally. □
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Exercise 12.5. Let G act orthogonally on Rn with respect to an invariant inner product,
and let V be a G-invariant linear subspace of Rn; that is, for any v ∈ V and g ∈ G, we have
g · v ∈ V . Show that the orthogonal complement V ⊥ is also G-invariant.

Slices. We make the following observation about orbits.

Lemma 12.6. Let G ⟳ M be a Lie group action and fix x0 ∈ M . The linear map
α∗|(1G,x0) : g × {0} → Tx0M has image Tx0(G · x0) and kernel h × {0}, where h is the Lie
algebra of H := Stab(x0).

Proof. Let F : g → Tx0(G · x0) be the linear map ξ 7→ α∗|(1G,x0)(ξ, 0). Let ξ ∈ g and gt be a
smooth curve such that g0 = 1G and d

dt

∣∣∣
t=0
gt = ξ. Then

d

dt

∣∣∣
t=0
gt · x0 = ξM |x0 ∈ Tx0M.

However, the curve gt · x0 is contained in the orbit G · x0, and so ξM |x0 ∈ Tx0(G · x0). Thus
F (g) is a linear subspace of Tx0(G · x0).

On the other hand,

dimTx0(G · x0) = dimG · x0 = dimG/H

by Proposition 10.16 and the Orbit Stabiliser Theorem. By the Quotient Manifold Theorem,

dim(G/H) = dim(G)− dim(H).

But
dimG = dim g = dim(kerF ) + dim(imF ).

If we can show that kerF = h, then

dimH = dim h = dim(kerF ),

and we would conclude that dimTx0(G · x0) = dim imF , and we would have the desired
equality.

Let ζ ∈ h, and let ht be a path in H such that h0 = 1H = 1G and d
dt

∣∣∣
t=0
ht = ζ. Then

F (ζ) =
d

dt

∣∣∣
t=0
ht · x = 0

since ht ∈ H. Thus h ≤ kerF . In the other direction, let ζ ∈ kerF ; hence ζM |x0 = 0. Recall
that ζ can be identified with a left-invariant vector field Xζ on G. Let gt be an integral curve
of Xζ through 1G defined on some open interval (−ε, ε); that is, for all t0 ∈ (−ε, ε),

d

dt

∣∣∣
t=t0

gt = Xζ |gt0 .

Identifying TG with G× g, the above equation is equivalent to
d

dt

∣∣∣
t=t0

gt = (gt0 , ζ).
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Consider the curve gt · x0. Differentiating:
d

dt

∣∣∣
t=t0

gt · x0 = α∗|(1G,x0)((gt0 , ζ), 0)

= (gt0)∗(ζM |x0) + 0

= (gt0)∗0

= 0.

Since t0 is arbitrary, gt · x0 is a constant curve. That is, gt ∈ H for all t ∈ (−ε, ε), and hence
ζ ∈ h. □

We now define some special submanifolds that are “complementary” to orbits.

Definition 12.7 (Slices). Let G ⟳ M be a Lie group action, and let x0 ∈ M . A slice for
the action through x0 is an embedded submanifold S satisfying the following conditions.

(1) x0 ∈ S,

(2) Tx0M = Tx0(G · x0)⊕ Tx0S,

(3) TxM = Tx(G · x) + TxS for all x ∈ S,

(4) S is Stab(x0)-invariant: h · x ∈ S for all x ∈ S and h ∈ Stab(x0), and

(5) if g ∈ G and x ∈ S such that g · x ∈ S, then g ∈ Stab(x0). ⋄

Example 12.8. Consider the action of S1 on R2 by rotations about the origin. Any open
ball B centred at the origin is a slice for the action through the origin. Given x0 ̸= 0, let
ε ∈ (0, 1) and define S = {tx0 | t ∈ (1− ε, 1 + ε)}. Then S is a slice for the action through
x0. //

Given a slice for an action through a point, we can start to construct a “local model” of
the action about that point. This means, the action takes on a very particular form around
that point. The following is adapted from [DK00, Lemma 2.1.1].

Proposition 12.9. Let G ⟳ M be a Lie group action and fix x0 ∈ M . Let S be a slice for
the action through x0.

(1) There is a submanifold N of G such that 1G ∈ N and g = T1GN ⊕ h, where h is the
Lie algebra of Stab(x0).

(2) There are open neighbourhoods V in N of 1G, W in S of x0, and U of x0 in M such
that the action map α : G×M →M restricts to a diffeomorphism V ×W → U .

Proof. Item 1 is a consequence of Exercise 11.8. To prove Item 2, by the Inverse Function
Theorem, it suffices to show that α restricted to N×S has bijective pushforward at (1G, x0).
Let F be the restriction of α∗|(1G,x0) to T1GN×Tx0S. Suppose F (ξ, v) = 0. Then ξM |x0+v = 0,
or ξM |x0 = −v ∈ Tx0S. By the second condition in the definition of a slice and Lemma 12.6,
this implies that ξM |x0 = 0 (and so v = 0 as well). Again by Lemma 12.6, ξ ∈ h. By

52



definition of N , however, ξ = 0. Thus F is injective. On the other hand, letting H =
Stab(x0), and applying the Orbit Stabiliser Theorem and the Quotient Manifold Theorem,

dimN × S = (dim g− dim h) + (dimM − dim(G · x0))
= (dimG− dimH) + (dimM − dimG+ dimH)

= dimM.

Thus F is surjective. □

Remark 12.10. In the proof of Proposition 12.9, we only used the first two conditions
from the definition of a slice, and so the proposition generalises to any submanifold S of M
containing x0 such that Tx0M = Tx0(G · x0) ⊕ Tx0S. This is important for the proof of the
Slice Theorem below. ⌟

Example 12.11. Let G be a Lie group and H a closed subgroup, which acts freely on G
by right multiplication. Let N be a submanifold of G such that 1G ∈ N and g = T1GN ⊕ h,
where h is the Lie algebra of H. By Proposition 12.9 and Remark 12.10, there are open
neighbourhoods W of 1G in H, V of 1G in N , and U of 1G in G, such that the multiplication
map m : G×H → G restricts to a diffeomorphism V ×W → U . //

We still need to discuss the existence of slices. In this case, we will assume that the action
is proper, and make the following observation.

Exercise 12.12. Let G be a Lie group.

(1) Suppose G ⟳ M is a Lie group action. Show that the action is proper if and only if
for any sequence (gi, xi) in G×M such that (xi, gi ·xi) converges to (x, x′) in M×M ,
there is a subsequence (gij) of (gi) converging to some g ∈ G. In this case, g · x = x′.

(2) Let H be a closed subgroup of G. Then left (or right) multiplication H × G →
G : (h, g) 7→ hg is a proper action of H on G.

(3) If G ⟳M is a proper Lie group action and x ∈M , then Stab(x) is compact.

Theorem 12.13 (Slice Theorem). Let G ⟳ M be a proper Lie group action. Then every
point admits a slice for the action.

Proof. Fix x0 ∈ M . By Item 3 of Exercise 12.12, H := Stab(x0) is compact. Thus, if we
restrict to the H-action (i.e. only allow elements of H to act), then x0 is a fixed point of this
action. By Bochner’s Linearisation Theorem there is an H-equivariant diffeomorphism λ
from an H-invariant open neighbourhood U of x0 to an H-invariant open neighbourhood V
of 0 ∈ Tx0M , where the action of H on Tx0M is the induced linear action. By Corollary 12.4,
we may assume that H acts orthogonally on Tx0M ∼= Rm with respect to the Euclidean inner
product, and thus V = Bε(0), an open ball of radius ε > 0 centred at 0.

Let v ∈ Tx0(G · x0) ≤ Tx0M . By Lemma 12.6, there exists ξ ∈ g such that v = ξM |x0 .
Thus, for any h ∈ H, we have h∗v = h∗ξM |x0 = Adh(ξ)M |x0 . Again by Lemma 12.6, this
means that h∗v ∈ Tx0(G · x0), and so the linear subspace Tx0(G · x0) is invariant by the
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H-action. By Exercise 12.5, the orthogonal complement Tx0(G · x0)⊥ is H-invariant as well.
Define Sε := λ−1(V ∩ Tx0(G · x0)⊥); since λ is equivariant, it follows that Sε is H-invariant
as well.

Recall that we showed in Matm×n(R), the matrices of rank at least k ≤ n form an open
set. It follows from this and Lemma 12.6 that nearby orbits to G ·x0 have dimension greater
than or equal to that of G · x0. In other words, since Tx0M = Tx0(G · x0) ⊕ Tx0S, after
shrinking ε,

TxM = Tx(G · x) + TxSε.

By definition, Sε is H-invariant, and so we only need to show the last condition of Defini-
tion 12.7 to complete the proof.

Suppose the last condition of Definition 12.7 does not hold for any Sη where 0 < η ≤ ε.
For sufficiently large K, we have that for each k ≥ K, there exists xk ∈ S1/k and gk ∈ G
such that gk · xk ∈ S1/k ⊆ Sε, but gk /∈ H. Then xk → x0 and gk · xk → x0, and since the
action is proper, there exists a subsequence of (gk) that converges to some g ∈ G such that
g · x0 = lim gk · xk = x0. Then g ∈ H. Without loss of generality, assume this subsequence is
(gk), and since g−1gk → 1G but g−1gk /∈ H and g−1gk · x0 ∈ S1/k for each k, we also assume
that g = 1G.

By Example 12.11, there is a submanifold N of G such that 1G ∈ N and g = T1GN ⊕ h,
and there are open neighbourhoods W of 1G in H, V of 1G in N , and U of 1G in G such
that the multiplication map m : G×H → G restricts to a diffeomorphism µ : V ×W → U .
Let (ak, hk) := µ−1(gk). Then the sequence ((ak, hk)) converges to (1G, 1G), and akhk = gk
for each k. Since gk = akhk /∈ H for each k, we have ak ̸= 1G for each k.

By Proposition 12.9 and Remark 12.10, there is an open neighbourhood V ′ of 1G in
N , some ε′ ∈ (0, ε), and an open neighbourhood U ′ of x0 such that the restriction of the
action map to V ′ × Sε′ is a diffeomorphism λ onto U ′. For sufficiently large k, ak ∈ V ′ and
hk · xk ∈ Sε′ , and since akhk · xk ∈ Sε′ for these k, we have λ−1(akhk · xk) = (ak, hk · xk).
But λ−1(akhk · xk) is also equal to (1G, akhk · xk), and so by bijectivity of λ, we must have
ak = 1G for sufficiently large k, a contradiction. □

Remark 12.14 (Isotropy Action). It follows from the proof above that the slice S is G-
equivariantly diffeomorphic to Tx0(G · x0)⊥. The latter can be (H-equivariantly) identified
with Tx0M/Tx0(G · x0). Here, the H-action on Tx0M (called the isotropy action of H on
Tx0M) descends to the quotient linear space Tx0M/Tx0(G · x0), and this action is sometimes
called the isotropy action as well. ⌟
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Week 13: The Equivariant Tubular Neighbourhood Theorem

In Section 12, we proved the Slice Theorem, which indicated that through any point of
a proper Lie group action, there is a slice for that action. However, our goal was to show
that there is an open neighbourhood of any orbit that has a very particular form, involving
a linear action. We are halfway there. We only need to describe how this “particular form”
will look like.

Before we push the rest of the way, we make some observations about proper actions. Let
H be a Lie group acting on two manifolds M and N . Then H acts on M ×N diagonally:

h · (x, y) = (h · x, h · y).

Lemma 13.1. Suppose H is a Lie group acting on manifolds M and N , and H acts on M
freely and properly. Then H acts freely and properly on M ×N via the diagonal action, and
hence the quotient space M ×H N := H⧹

(M ×N) admits a unique manifold structure for
which the quotient map is a surjective submersion.

Proof. To check freeness, suppose h · (x, y) = (x, y). Then (h · x, h · y) = (x, y), and so in
particular h · x = x. Since the action of H on M is free, we have h = 1H . We conclude that
the H action on M ×N is free.

To check properness, suppose ((hi, (xi, yi))) is a sequence in H × (M × N) such that
((xi, yi), hi · (xi, yi)) converges to ((x, y), (x′, y′)) in (M ×N)2. Then, in particular, (xi, h ·xi)
converges to (x, x′) in M2. Since the action of H on M is proper, there exists a subsequence
(hij) of (hi) that converges to some h ∈ H. Then ((hij , xij)) converges to (h, x) in H ×M ,
and by continuity, we have that x′ = h · x. Similarly, we have ((hij , yij)) converges to (h, y)
in H ×N , and so by continuity, we have that y′ = h · y. We conclude that ((hij , (xij , yij)))
converges to (h, (x, y)), and h · (x, y) = (x′, y′), and conclude that the H-action on M × N
is proper. The last statement now follows from the Quotient Manifold Theorem. □

Lemma 13.2. Let G be a Lie group, let H be a closed subgroup, and let H ⟳ M be a Lie
group action. Then G ×H M is a manifold such that the quotient map G ×M → G ×H M
is a surjective submersion, and there is a G-action on G×H M such that the quotient map
is G-equivariant with respect to the G-action g′ · (g, x) := (g′g, x) on G×M .

Remark 13.3. There are two actions on G × M : the H-action and the G-action. To
distinguish them, we take the H-action to be the anti-diagonal action: h · (g, x) :=
(gh−1, h · x). This has the advantage that (gh, x) and (g, h · x) are in the same orbit, and so
represent the same element in G×H M . ⌟

Proof of Lemma 13.2. The first claim follows from Exercise 12.12, Lemma 13.1, and the
fact that group multiplication (on the left or right) is a free action. Define a G-action on
G×H M by g · [g0, x0] = [gg0, x0]. This is well-defined: if [g1, x1] = [g0, x0], then there exists
h ∈ H such that (g1, x1) = (g0h

−1, h · x0), in which case (gg1, x1) = (gg0h
−1, h · x0); that

is, g · [g0, x0] = g · [g1, x1]. It is immediate that the quotient map G ×M → G ×H M is
G-equivariant. Since the action G× (G×M) → G×M is smooth, as is the quotient map to

55



G×HM , their composition is smooth: thus the action G× (G×HM) → G×HM is smooth
by Lemma 10.17. This completes the proof. □

One more quick observation about submersions, and we will be ready.

Exercise 13.4. Let f : M → N be a submersive smooth map. Show that f is open.

We are now prepared to obtain our “local model” of a compact Lie group action about
one of the orbits. We follow the presentation of [DK00, Theorem 2.4.1].

Theorem 13.5 (Equivariant Tubular Neighbourhood Theorem). Let G ⟳ M be a compact
Lie group action, and let x0 ∈ M . There exists a G-invariant open neighbourhood U of
G · x0 and a G-equivariant diffeomorphism F : U → G ×H V where H := Stab(x0) and
V = Tx0M/Tx0(G · x0) equipped with the isotropy H-action.

Proof. By the Slice Theorem, there is a slice S for the G-action through x0. Consider the
restriction of the action α : G ×M → M to the product G × S; denote this by F̃ . Since
TxM = Tx(G · x) + TxS for each x ∈ S, by Lemma 12.6, F̃ is submersive at each (1G, x).
For any x ∈M , g ∈ G, and (ξ, v) ∈ T(1G,x)(G×M),

α∗((g, ξ), v) = g∗α∗(ξ, v).

Since g∗ = ρ(g)∗ is a linear isomorphism from TxM to Tg·xM , it follows that F̃ is submersive
at all (g, x) ∈ G× S. By Exercise 13.4, the image U := im

(
F̃
)

is open.

Suppose that (g1, x1) and (g2, x2) satisfy [g1, x1] = [g2, x2] in G×H S. There is some h ∈ H
such that (g2, x2) = (g1h

−1, h · x1) Then

F̃ (g2, x2) = g2 · x2 = g1h
−1 · h · x1 = g1 · x1 = F̃ (g1, x1).

This shows that F̃ descends to a well-defined function F : G×H S → U sending [g, x] to g ·x.

Suppose (g1, x1), (g2, x2) ∈ G× S such that F̃ (g1, x1) = F̃ (g2, x2). Then g1 · x1 = g2 · x2,
or x2 = g−1

2 g1 · x1. Since x1, x2 ∈ S, by definition of a slice, g−1
2 g1 =: h ∈ H. Thus

[g2, x2] = [g2, h · x1] = [g2h, x1] = [g1, x1]

in G ×H S. It follows that F is injective. Moreover, since F̃ is surjective, we conclude
that F is bijective. Since the quotient map G × S → G ×H S is a surjective submersion
by the Quotient Manifold Theorem, and F̃ is smooth, we conclude that F is smooth by
Lemma 10.17. Since F̃ is submersive at each point, so is F , and so we conclude that F is
as diffeomorphism. In fact, for g′ ∈ G and [g, x] ∈ G×H S,

F (g′ · [g, x]) = F ([g′g, x]) = g′g · x = g′ · F [g, x],
and so F is a G-equivariant diffeomorphism. The remainder of the proof follows from Re-
mark 12.14. □

Remark 13.6. An explicit way of writing down the G-invariant neighbourhood U in The-
orem 13.5 is as G · S. ⌟
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Week 14: The Orbit Type Stratification

The moral of the Equivariant Tubular Neighbourhood Theorem is that a compact Lie
group action locally about a point looks like an orbit cross a linear action of the stabiliser
of that point. How the picture generalises to the entire orbit requires knowledge of fibre
bundles, which is outside the scope of this course. However, we can look more closely at the
structure of the linear action, and how this structure gets “dragged out” along the orbits by
the action.

It turns out the way a compact Lie group action behaves about a point is highly influenced
by how it behaves in a neighbourhood of that point; in particular, the stabiliser of a given
point is related to that of nearby points. For instance, suppose (xi) is a sequence in a manifold
M with a compact Lie group action of G on it such that for each i, a closed subgroup H is a
subgroup of Stab(xi). Suppose also that (xi) converges to x ∈M . For any h ∈ H, we have

α(h, x) = limα(h, xi) = limh · xi = limxi = x

by continuity of the action. In other words, we have the following lemma.

Lemma 14.1. Let G ⟳M be a compact Lie group action, and let MH be the set of all points
that are fixed by a closed subgroup H. Then MH is a closed subset of M .

So, if we restrict to the corresponding H-action on M , and fix x ∈MH , then x is a fixed
point of the H-action. By Bochner’s Linearisation Theorem, there are H-invariant open
neighbourhoods U of x and V of 0 ∈ TxM and an H-equivariant diffeomorphism λ : U → V ;
that is, we can approximate the H-action about x by a linear H-action.

Exercise 14.2. Let H be a Lie group acting linearly on a vector space W . Then WH is a
linear subspace of W .

Combining Lemma 14.1 and Exercise 14.2 yields the following proposition.

Proposition 14.3. Let G ⟳ M be a compact Lie group action. For any closed subgroup
H ≤ G, the connected components of MH are closed submanifolds of M .

Proof. Fix a closed subgroup H ≤ G. If MH = ∅, then we are done. Otherwise, suppose x ∈
MH . By Exercise 14.2 and the argument above, there are H-invariant open neighbourhoods
U of x, V of 0 ∈ TxM , and an H-equivariant diffeomorphism λ : U → V . Since λ is H-
equivariant, it follows that MH ∩ U = λ−1((TxM)H ∩ V ); that is, MH ∩ U is diffeomorphic
to an open subset of a linear subspace of a vector space. Since x is arbitrary, it follows that
each connected component of MH has this feature, and so each connected component is a
submanifold of M . Closedness follows from Lemma 14.1. □

Remark 14.4. We have to take connected components in the statement of Proposition 14.3,
as the dimensions of these components do not have to be equal. ⌟

We now want to consider going along an orbit.
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Exercise 14.5. Let G ⟳ M be a Lie group action, and fix x ∈ M . If H = Stab(x), then
gHg−1 = Stab(g · x). In particular, stabilisers of points in the same orbit are isomorphic as
groups.

Definition 14.6 (Orbit Types). Let G ⟳ M be a Lie group action. Define an equivalence
relation ∼ on M by: x ∼ y if there is a G-equivariant bijection between G · x and G · y. The
equivalence classes are called orbit types of the action. ⋄

Exercise 14.7. Verify that ∼ in Definition 14.6 is an equivalence relation.

Lemma 14.8. Given a Lie group action G ⟳ M and x, y ∈ M , we have x ∼ y if and only
if Stab(x) and Stab(y) are conjugate subgroups of G.

Proof. (⇒) Suppose x ∼ y. Then there is a G-equivariant bijection φ : G · x → G · y. In
particular, there is some gφ ∈ G so that φ(x) = gφ · y, and thus φ(g · x) = ggφ · y for all
g ∈ G.

Let z = φ(x) = gφ · y. If h ∈ Stab(x), then

h · z = h · φ(x) = φ(h · x) = φ(x) = z,

and so h ∈ Stab(z). On the other hand, since φ is a bijection, if k ∈ Stab(z), then

k · x = k · φ−1(z) = φ−1(k · z) = φ−1(z) = x.

Thus we can conclude that Stab(x) = Stab(z). Exercise 14.5 now finishes the proof of this
direction.

(⇐) Suppose Stab(y) = gStab(x)g−1 for some g ∈ G. Then the map Stab(x)⧹
G →

Stab(y)⧹
G sending Stab(x)g′ to Stab(y)g′ is a well-defined diffeomorphism (why?). By Propo-

sition 10.16, this implies that the orbit G · x and G · y are in bijection, and so x ∼ y. □

Notation 14.9. Given a Lie group action G ⟳M , denote by M(H) the set

{x ∈M | Stab(x) is conjugate to H}. ⋄

Note that M(H) ⊂ G ·MH for any subgroup H of G, and that M(H) is G-invariant.

Corollary 14.10. Given a Lie group action G ⟳M and x ∈M , the orbit type of x is equal
to M(H) where H = Stab(x).

Proof. If y ∈M(H), then there is some g ∈ G such that g · y ∈MH . Thus the stabiliser of y
is g−1Hg, and we conclude that x ∼ y by Lemma 14.8.

Conversely, if x ∼ y, then Stab(y) = gHg−1 for some g ∈ G by Lemma 14.8, in which
case y ∈M(H) by definition. □
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Given a manifold M , a subset S ⊆ M is locally closed if it is equal to the union of
a closed subset of M and an open subset of M . More intrinsically, for manifolds, this is
equivalent to S being locally compact in the subspace topology of M ; that is, every point
of S had a compact neighbourhood in the subspace topology. Examples of subspaces of R2

that are not locally closed include R2 ∖ {(0, y) | y ̸= 0} and the open disk with one of its
boundary points. The irrationally-sloped line in T2 is an example of a submanifold that
is not locally closed. Any embedded submanifold, however, is locally closed. We are now
on the verge of introducing spaces that are no longer manifolds, but spaces that have nice
partitions into manifolds.

Definition 14.11 (Stratified Space). Let X be a topological space. A stratification of X
is a locally finite partition S (i.e. for every x ∈ X there is an open neighbourhood which
intersects only finitely-many pieces of the partition) satisfying the following two conditions:

(1) (Manifold Condition) Each piece of S, called a stratum, is a locally closed smooth
manifold, and

(2) (Frontier Condition) if S1, S2 ∈ S such that S1∩S2 ̸= ∅, then S1 is in the boundary
of S2. ⋄

Example 14.12. Let p : Rm → Rn be a surjective polynomial. Any level set of p comes
equipped with a stratification, and so is a stratified space. For instance, consider the level
set xy = 1, the union of the axes of R2. This has two strata: the origin, and the complement
(which is the union of four rays). //

It turns out that given a proper Lie group action G ⟳ M , the orbit types induce a
stratification of M , which in turn induce a stratification of G⧹

M . This is important, since
without freeness of the action, the space G⧹

M is generally not a manifold; the stratification
gives us a way of understanding its structure.

To prove this result, we need another definition and a series of lemmas.

Definition 14.13 (Local Action Types). Let G ⟳ M be a Lie group action. Define an
equivalence relation ≈ on M as follows: x ≈ y if for any G-invariant open neighbourhoods
U and V of x and y, resp., after possibly shrinking U and V , there exists a G-equivariant
diffeomorphism Φ: U → V sending G · x onto G · y. The equivalence classes are called local
action types. ⋄

Remark 14.14. This is a modification of [DK00, Definition 2.6.5], which is slightly erro-
neous: in their definition, one only requires for there to exist U and V and a diffeomorphism
Φ. However, in this case, one can take U = V = G and Φ = idM . I believe Definition 14.13
is more along the lines of what the authors intended. ⌟

Exercise 14.15. Verify that ≈ in Definition 14.13 is an equivalence relation. Also, show
that a local action type is contained within an orbit type, and that local orbit types are
G-invariant.
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Lemma 14.16. Let G ⟳M be a proper Lie group action, let x0 ∈M with stabiliser H, and
let S be a slice for the action through x0. Any two points in SH are in the same local action
type. Consequently, any two points in G · SH are in the same local action type.

Proof. By the Equivariant Tubular Neighbourhood Theorem and Remark 12.14, it suffices
to show that for any v, w ∈ V H , the two points [1G, v] and [1G, w] in G×H V are in the same
local action type for the standard G-action on G ×H V , where V = Tx0M/Tx0(G · x0). By
Exercise 14.2, V H is a linear subspace of V , on which the H-action can be assumed to be
orthogonal by Corollary 12.4 and Item 3 of Exercise 12.12 with respect to an invariant inner
product on V . Choose ε > 0 sufficiently small so that the open balls BV H

ε (v) and BV H

ε (w)

in V H of radius ε centred at v and w, resp., are disjoint. Let B(V H)⊥
ε (v) and B

(V H)⊥
ε (w) be

open balls in v + (V H)⊥ and w + (V H)⊥, resp., each of radius ε centred at v and w, resp.
Denote by Bv := BV H

ε (v) × B
(V H)⊥
ε (v) and Bw := BV H

ε (w) × B
(V H)⊥
ε (w); these are disjoint

product open neighbourhoods of v and w, resp., in V . Moreover, there is an H-equivariant
diffeomorphism φ : Bv → Bw sending u ∈ Bv to u− v + w ∈ Bw.

In G × V , the sets G × Bv and G × Bw are G-invariant open neighbourhoods of (1G, v)
and (1G, w), resp., with respect to the diagonal action of G on G × V , in which G acts by
left multiplication on G and trivially on V . The quotient map G×V → G×H V is open (see
Lemma 6.21), and so G × Bv and G × Bw descend to open neighbourhoods Uv and Uw of
[1G, v] and [1G, w], resp. We claim that idG×φ descends to a G-equivariant diffeomorphism
Φ: Uv → Uw sending [g, v′] to [g, φ(v′)]. Since idG × φ is H-equivariant with respect to
the anti-diagonal action of H on G × V , Φ is a well-defined bijection. Smoothness in both
directions follow from Lemma 10.17. Finally, G-equivariance of Φ follows from that of the
quotient map G× V → G×H V .

The last statement follows from the fact that the action is via diffeomorphisms, which
themselves are homeomorphisms. □

Lemma 14.17. Let G ⟳M be a proper Lie group action, let x0 ∈M with stabiliser H, and
let S be a slice for the action through x0.

M(H) ∩G · S = G · SH .

Proof. Let x ∈ M(H) ∩ G · S. There is some g ∈ G such that y := g · x ∈ S, and some
g′ ∈ G such that Stab(x) = g′H(g′)−1. Hence, gg′h(g′)−1g−1 · y ∈ S for any h ∈ H. By
definition of a slice, gg′h(g′)−1g−1 ∈ H for all h ∈ H; that is, the conjugate gg′H(g′)−1g−1 ≤
H. Since conjugation by gg′ is a diffeomorphism on G and H is compact, it follows that
gg′H(g′)−1g−1 = H. Since Stab(y) = gg′H(g′)−1g−1 = H, we have y ∈ SH , and so we
conclude that x ∈ G · SH .

In the other direction, let x ∈ G · SH . There exists g ∈ G such that y := g · x ∈ SH , and
so Stab(y) ≥ H. But by definition of a slice, Stab(y) sends an element of S (namely, y) to
S, and so Stab(y) ≤ H. Thus Stab(y) = H, and we conclude that x ∈M(H). □

Corollary 14.18. Let G ⟳ M be a proper Lie group action, let x0 ∈ M , and let H =
Stab(x0). Then the connected components of M(H) are locally closed submanifolds of M .
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Proof. Since G · SH via the Equivariant Tubular Neighbourhood Theorem can be identified
with the subspace G×H V

H ∼=
(
H⧹

G
)
× V H , where V = Tx0M/Tx0(G · x0), it is a subman-

ifold of M . Moreover, V H is a closed submanifold of G ×H V H , and hence SH is a closed
submanifold of G · SH , and hence is locally compact. By Lemma 14.17, M(H) ∩ G · S is a
locally compact submanifold of M , and thus so are connected components of M(H). □

Corollary 14.19. Let G ⟳ M be a proper Lie group action, and let x0 ∈ M . The local
action type of x0 is an open subset of the orbit type of x0.

Proof. By Exercise 14.15, the local action type of x0 is contained in the orbit type of x0.
Let H = Stab(x0), and so the orbit type of x0 is M(H). Thus we only need to show that
there is an open neighbourhood of x0 in M(H) that is contained in the local action type of
x0.

Let S be a slice for the action through x0. By Lemma 14.17, the G-invariant open
neighbourhood M(H) ∩ G · S of x0 in M(H) is equal to G · SH . However, by Lemma 14.16,
elements of SH are in the same local action type, and since local action types are G-invariant
by Exercise 14.15, G ·SH is contained in the same local action type. This serves as our open
neighbourhood of x0. □

⋆Exercise 14.20. Let X be a locally path-connected topological space; this means that
about any x ∈ X, given an open neighbourhood U of x, there exists an open neighbourhood
V ⊆ U of x that is path-connected (i.e. every point in V is in the image of a continuous
map c : [0, 1] → V ). Let C ⊆ X be non-empty, open, and closed. Show that C is a union of
path-connected components of X. In particular, if C is path-connected, then it is an entire
path-connected component of X.

Corollary 14.21. Let G ⟳M be a proper Lie group action, and let x0 ∈M . The local action
type of x0 is a union of (path-)connected components of the orbit type of x0. Consequently,
the local action types of x0 are locally closed submanifolds of M .

Proof. By Corollary 14.19, the local action type of x0 is an open subset of the orbit type
of x0. But the orbit type is a union of (disjoint) local action types. Thus the complement
of the local action type in the orbit type is a union of local action types, all of which are
open. Thus, the complement of a local action type is open, and hence a local action type is
also closed. By ⋆Exercise 14.20, the first statement follows. The second statement follows
from Corollary 14.18 and the fact that connected components of local action types have the
same dimension; in particular, the dimension dimG + dimV H − dimH using the notation
set above in the previous corollaries and lemmas. □

The connected components of the local action types will serve as the strata of a strati-
fication of M . So far, the Manifold Condition is shown by Corollary 14.21. We still need
to show local finiteness of the partition into the local action types, as well as the Frontier
Condition. We prove local finiteness by induction on the dimension of M .

61



If dimM = 0, then the result is immediate. Suppose the local finiteness result is true for
all manifold of dimension less than m > 0. Let G ⟳ M is a proper Lie group action and
dimM = m. Fix x0 ∈ M . By the Equivariant Tubular Neighbourhood Theorem, we can
identify an open G-invariant neighbourhood of x0 with G ×H V where H = Stab(x0) and
V = Tx0M/Tx0(G · x0); it suffices to prove local finiteness for the G-action on G ×H V . A
point [g, v] ∈ G ×H V has the same local action type as [1G, v], and so it suffices to prove
the result for V itself. If dimV < m, then we are done. Suppose otherwise; the proof
is now reduced to showing this for an orthogonal action of a compact Lie group H on an
m-dimensional vector space V with an invariant inner product.

The linear subspace V(H) = V H is the linear action type of 0. The orthgonal subspace
W := V ⊥

(H) is H-invariant. For a non-zero point w ∈ W , its linear action type is the same
as that of w/|w| in the unit sphere Σ of W . In particular, W ∖ {0} is H-equivariantly
diffeomorphic to Σ × R+; the linear action types in W ∖ {0} are precisely T × R+ under
this identification, where T runs over the local action types of Σ. Since Σ is a manifold of
dimension at most m− 1, by the induction hypothesis, there are only finitely-many such T .
We have just proven the following lemma.

Lemma 14.22. Given a proper Lie group action on a manifold, the partition of the manifold
into connected components of local action types is locally finite.

Returning to the linear situation in the paragraph above, note that the linear action
types of V are precisely V H and V H + T × R+ as T runs over the local action types of Σ.
In particular, these satisfy the Frontier Condition: V H is in the boundary of all connected
components of local action types. This property now extends to connected components of
local action types of a proper Lie group action via the Equivariant Tubular Neighbourhood
Theorem. By Corollary 14.21 we now have the following theorem.

Theorem 14.23. Let G ⟳ M be a proper Lie group action. The connected components of
the orbit types form a stratification of M , called the orbit type stratification.

It turns out that the orbit type stratification of M descends via the quotient map to a
stratification of G⧹

M , also called the orbit type stratification. In the notation above,
G ×H V descends to G⧹

G×H V , which can be identified with H⧹
V , in which V H remains

present in H⧹
V as a stratum (proving the Manifold Condition). The rest of the condition

for a stratification follow from those of the orbit type stratification on M . However, we will
not have time to cover this.
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