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Abstract

Due to the advancement in recent hardware technology and vast information availability, a
growing need for efficient and adaptable processing has become a necessity. Artificial neural
network (ANN) mimics the functionality of human brain and can be applied to solve many
complex engineering problems such as pattern recognition, control, time series modeling, and
optimization. The capability of ANN is limited due to current microprocessing systems, and thus
need specialized digital logic. In this paper, a neuron for a multilayer preceptron (MLP) using
back-propagation is applied using digital logic methods, which is implemented using CMOS very
large system integration (VLSI) for high speed and energy efficiency is proposed. The key
feature, massive parallel processing is made possible using the proposed ANN approach and as
proof-of-concept.

Introduction

Artificial Neural Networks (ANNs) mimic the function of a biological neural network. When
considering the biological neural network at a very summarized view point, their function is
pattern recognition. Humans use their brains to recognize patterns in all sorts of things, from
mathematics, to weather, survival, etc. Now as expected, ANNs attempt to mimic this activity,
and can therefore be used for similar tasks, such as pattern recognition, prediction, controls,
outlier detection, etc. These basic categories encompass many engineering situations that would
otherwise require complex mathematics, very specialized programming, or the “human
touch”.

If implemented properly the Programmable Artificial Neural Chip Acquires Knowledge by
Experience (PANCAKE) could have many potential uses. It’s main advantage is that it can be
implemented as a control system that operates on a large amount of variables. One potential
application is increasing the accuracy of readings from nerve endings for motor enhanced
prosthetics. The propagation of nerve signals can be effected by both internal and external
factors1. Do to this variance, the quality of motor controllers will vary. Implementing PANCAKE
with appropriate sensors (IE Body temp, Heart rate, Barometric Pressure) will allow for the signal
to be automatically compensated, and therefore will increase the quality of control.



Another potential application for PANCAKE would be implementation in prediction systems. For
example PANCAKE could monitor a large variety of environmental weather conditions, and from
that data, it could begin to make localized weather prediction on rain fall, humidity, et cetera.
PANCAKE can also use it’s large amount of inputs for tasks such as pattern recognition which
might be geared for industrial quality detection, character detection, and so on.

The key component of ANNs are the neurons themselves. A typically accepted neuron structure
is the McCulloch-Pitts neuron(MPN)1. The MPN consists of weights, a summation, and an
activation function as seen in Figure 1. The MPN applies weights to incoming signals, and sums
the weighted signals. That summation is fed into an activation function φ, which is commonly
assigned the sigmoid logistics function in Equation 1 where vj is defined as the output of the
summing function.

Figure 1: A McCulloch-Pitts neuron

φj =
1

1 + e−vj
(1)

Using a learning algorithm such as back-propagation, a network of MPNs can be taught to handle
sets of data, and make predictions or choices based on past experience. The individual neurons
“learn” by adjusting their attached weights according to feedback from the learning
algorithm.

The proposed neuron is a single piece in an integrated circuit containing a discrete artificial neural
network capable of multiple different machine learning tasks. Since PANCAKE implements a
neural network in hardware form, it will be capable of multiple different machine learning tasks,
and capable of handling assigned tasks in a true parallel nature.

Methodology

MLP consist of three parts as shown in Figure 2, Weights, Summing Compression Adder (SCA),
and the Sigmoid Function Block (SFB). The topology of these functional blocks will be described
in this section.



Figure 2: A McCulloch-Pitts neuron

The system is discrete, and requires the SFB to quantize the continuous data into 32 states as
shown in Figure 3.

Figure 3: A table and graph displaying the discrete and continuous sigmoid function

Binary values are assigned to defined points on the input axis, as well as the output axis. The
input is cut into the signed binary value 00000000 to 11111111, or more simply an 8 bit input.
The output is defined as a 5 bit output. From these assigned values, Karnaugh maps can be made
to find the boolean relation4. These functions are later translated into a NAND-NOR system and
then further translated into a VLSI Block. Functions 2 to 6 are defined assuming the most
significant bit of the input is A and the least significant bit is H.

MSB = Ā (2)



MSB−1 = ĀB +BD +BC + ĀCDH + ĀCDG+ ĀCDF + ĀCDE (3)

MSB−2 = ĀCD̄ + ĀBC + ACD + B̄CD̄F + B̄CD̄E + ABC̄D̄ + ĀB̄C̄DG+ ĀB̄C̄DF

+ ĀB̄C̄DE + B̄CD̄GH + ĀC̄DEFG+ ĀCĒF̄ ḠH̄ + CD̄EFGH

(4)

MSB−3 = C̄D̄EF + ĀB̄CD̄ +BCDE + AB̄C̄D + ABC̄D̄ + ĀB̄C̄DEH + ĀB̄C̄EG

+ ĀC̄EFḠ+ ĀBC̄EF̄ + ĀBC̄DĒ + AB̄DEH + AB̄DEG+ AB̄DEF

+ ABD̄EF̄ + ABD̄EḠ+ ABD̄EH̄ + ĀC̄DĒF̄ Ḡ+ B̄CD̄ĒF̄ Ḡ+ B̄CD̄ĒF̄ H̄

+ ĀBDĒFH + ĀBDĒFG+ ĀB̄DĒF̄ ḠH̄ + ABD̄ĒFGH

(5)

MSB−4 = ĀB̄D̄FH + C̄D̄ĒFH + ĀB̄D̄FG+ ĀC̄ĒFG+ ĀB̄CD̄E + ĀCD̄EG

+ ĀB̄CEF + ĀCD̄EF + ĀBC̄D̄Ē + AB̄C̄EF̄ + AB̄C̄DE + AB̄CDĒ + ACDĒF

+ ABC̄D̄E + ABDEF + ABCFḠ+ ABCFH̄ + B̄C̄ĒFGH + B̄C̄EF̄ ḠH̄

+ ĀB̄C̄DF̄ Ḡ+ B̄CD̄EFG+ ĀCEFGH + ĀBC̄ĒGH + ĀBC̄DFḠ

+ ĀBC̄DEF̄ + ĀBCDĒF̄ + AB̄C̄D̄ĒH + AB̄C̄D̄ĒG+ AB̄C̄D̄ĒF

+ AB̄CĒF̄ Ḡ+ AB̄CĒF̄ H̄ + ABCD̄ĒF̄ + ĀB̄DĒF̄ ḠH̄ + ĀBDĒFḠH̄

+BCD̄EF̄GH + AB̄DEF̄ ḠH̄

(6)

Next, the SCA is considered. One of the issues presented in PANCAKE is that the network is
defined to be 32 x 32 neurons; implying that each neuron will have 32 connections. This also
implies that the summation node of the neuron will have to sum 32 8 bit numbers in a parallel
fashion. Though this is entirely achievable the output of the adder would be a 13 bit number, and
would require more inputs to be considered in the SFB. Also the adder circuit as well as the SFB
will be larger and will hinder the goal of 32x32 neurons. Therefore the following design is
proposed in Figure 4. The concept is to use an 8 bit full adder to add two 8 bit numbers, and
ignore the LSB. Instead the carry bit is treated as the MSB of the output byte, in essence shifting
each bit down one binary value. This method can be cascaded to handle any amount of inputs and
compress it into an 8 bit output.

It should be noted that if an SCA is not utilized to full capacity, there will be a more significant
round off error (IE an SCA is build to handle 10 inputs, but only 5 are used). If this case is not
avoidable, then selector logic must be used to take intermediate sums from the SCA to reduce
error.

Lastly, the Weight block will be discussed. A typical weight in an ANN operates as a gain, or
“multiplier” to it’s input data. Conventional multiplication will not work well within the bounds



Figure 4: A block diagram of a four 8 bit input, single 8 bit output Summing Compression Adder

of the discrete domain defined for the designed neuron. The weight block is instead designed to
operate on a shift-and-add system. The back-propagation learning algorithm will have to be
modified to generate two values, one that specifies how many bits the value will have to shift and
in what direction. The second value will be a “fine tune” adjustment to specify a value to add or
subtract from the shifted input.

Figure 5: A block diagram of the weight node

Results and Analysis

All of the systems proposed are within the realm of possibility to implement, however their
success depends on the implementation of optimal learning algorithm. The SFB is designed in
Electric VLSI using the sea of gates layout method3. The speed of the largest gate in the SFB is
measured in a SPICE simulation, and is found to be a 19.2 nS Transition, or alternatively, it is
capable of switching at 51 MHz when used alone. The dimensions of the SFB are measured to be
1320 nM by 1120 nM.



Figure 6: A section of the completed SFB

Conclusion and Future Work

PANCAKE is modeled based on the state-of-the art methods tailored to solve real-world
constraints. The proposed architecture is feasible, and require testing on benchmark problems
such as weather prediction, which will be discussed in future research.
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