1. (3 points) A hole of radius r is bored through the center of a sphere of radius $R > r$. Find the volume of the remaining portion of the sphere.

Solution: The line $y = r$ intersects the semicircle $y = \sqrt{R^2 - x^2}$ when $r = \sqrt{R^2 - x^2}$ implies that $r^2 = R^2 - x^2$, so $x^2 = R^2 - r^2$ and $x = \pm \sqrt{R^2 - r^2}$. Rotating the region (bounded by $y = \sqrt{R^2 - x^2}$ and $y = r$) about the x-axis gives

$$
V = \int_{-\sqrt{R^2-r^2}}^{\sqrt{R^2-r^2}} \pi \left((\sqrt{R^2 - x^2})^2 - r^2 \right) \, dx.
$$

Then since the integrand is an even function,

$$
V = 2\pi \int_{0}^{\sqrt{R^2-r^2}} \left((R^2 - x^2) - r^2 \right) \, dx = 2\pi \int_{0}^{\sqrt{R^2-r^2}} ((R^2 - x^2) - r^2) \, dx.
$$

Then

$$
V = 2\pi \int_{0}^{\sqrt{R^2-r^2}} (R^2 - x^2 - r^2) \, dx = 2\pi \left. \left((R^2 - r^2)x - \frac{1}{3}x^3 \right) \right|_{0}^{\sqrt{R^2-r^2}}
$$

$$
= 2\pi \left((R^2 - r^2)\sqrt{R^2-r^2} - r^2 \right) - \frac{2}{3}(R^2 - r^2)\sqrt{R^2-r^2}
$$

$$
= 2\pi \cdot \frac{2}{3}(R^2 - r^2)^{3/2} = \frac{4}{3}(R^2 - r^2)^{3/2}.
$$

This answer should make sense to you, since taking the limit as $r \to 0$ yields $V \to \frac{4}{3}\pi R^3$.
2. (2 points) Newton’s Law of Gravitation states that two bodies with masses \(m_1 \) and \(m_2 \) attract each other with a force

\[
F = G \frac{m_1 m_2}{r^2},
\]

where \(r \) is the distance between the bodies and \(G \) is the gravitational constant. If one of the bodies is fixed, find the work needed to move the other from \(r = a \) to \(r = b \).

Solution: We have

\[
W = \int_a^b F(r) \, dr = \int_a^b G \frac{m_1 m_2}{r^2} \, dr = Gm_1 m_2 \left(\frac{-1}{r} \right) \bigg|_a^b = Gm_1 m_2 \left(\frac{1}{a} - \frac{1}{b} \right).
\]
3. (2 points) If \(f(0) = g(0) = 0 \) and \(f'' \) and \(g'' \) are continuous, show that

\[
\int_0^a f(x)g''(x) \, dx = f(a)g'(a) - f'(a)g(a) + \int_0^a f''(x)g(x) \, dx.
\]

That is, evaluate the integral on the left until you end at the expression on the right.

Solution: Suppose \(f(0) = g(0) = 0 \) and let \(u = f(x) \) and \(dv = g''(x) \, dx \). Then \(du = f'(x) \, dx \) and \(v = g'(x) \). So our integral becomes

\[
\int_0^a f(x)g''(x) \, dx = f(x)g'(x) \bigg|_0^a - \int_0^a f'(x)g'(x) \, dx = f(a)g'(a) - \int_0^a f'(x)g'(x) \, dx.
\]

Now we use integration by parts again on the integral on the right. Let \(U = f'(x) \) and \(dV = g'(x) \, dx \). Then \(dU = f''(x) \, dx \) and \(V = g(x) \). Then

\[
\int_0^a f'(x)g'(x) \, dx = f'(x)g(x) \bigg|_0^a - \int_0^a f''(x)g(x) \, dx = f'(a)g(a) - \int_0^a f''(x)g(x) \, dx.
\]

Combining the two lines gives

\[
\int_0^a f(x)g''(x) \, dx = f(a)g'(a) - f'(a)g(a) + \int_0^a f''(x)g(x) \, dx.
\]
4. (3 points) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by \(y = e^x, y = e^{-x}, \) and \(x = 1 \) about the \(y \)-axis.

Solution: The volume of the solid is given by

\[
V = \int_0^1 2\pi (e^x - e^{-x}) \, dx = 2\pi \int_0^1 (xe^x - xe^{-x}) \, dx = 2\pi \left(\int_0^1 xe^x \, dx - \int_0^1 xe^{-x} \, dx \right).
\]

We must use integration by parts on both integrals. For the first integral, let \(u = x \) and \(dv = e^x \). Then \(du = dx \) and \(v = e^x \). So

\[
\int xe^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x.
\]

A similar process on the other integral yields

\[
\int xe^{-x} \, dx = -xe^{-x} - e^{-x}.
\]

So

\[
V = 2\pi \left(\int_0^1 xe^x \, dx - \int_0^1 xe^{-x} \, dx \right) = 2\pi \left(\left. \left(xe^x - e^x \right) \right|_0^1 - \left. \left(-xe^{-x} - x \right) \right|_0^1 \right) = 2\pi \left(\frac{2}{e} - 0 \right) = \frac{4\pi}{e}.
\]