1-sample Wilcoxon Signed Rank Test

test for the median of a single population.

5-Step Procedure

1. Set $H_0: M = M_0$

 $H_a: M \neq M_0$

 $M > M_0$

 $M < M_0$

2. Select α

3. Test statistic

4. Find the p-value or the critical value/rejection region

5. Draw the conclusion
1-sample Wilcoxon Signed Rank Test

- It is an analog of the 1-sample t-test

- from a normally distributed population, as the t-test does. But Wilcoxon test assumes the data comes from a symmetric distribution. Wilcoxon test does not require the data to come

- If you cannot justify this assumption of symmetry, use the nonparametric 1-sample sign test, which does not assume a symmetric distribution.
1-sample Wilcoxon Signed Rank Test

Test Statistic

- Calculate \(D_i = X_i - M_0 \), do not use the observation if \(X_i = M_0 \) and reduce \(n \) by 1.
- Rank \(|D_i| \). For same \(|D_i| \)s the ranks are the average of the consecutive ranks of \(|D_i| \)s as if they are not tied.
- Calculate \(T_+ \), the sum of the ranks with positive \(D_i \)s and \(T_- \), the sum of the ranks with negative
- The test statistic is smaller of \(T_+ \) or \(T_- \) for \(H_a: M \neq M_0 \);
 \(T_- \) for \(H_a: M < M_0 \) and \(T_+ \) for \(H_a: M > M_0 \)
- Use formula \(T_+ + T_- = n(n+1)/2 \). Why?
1-sample Wilcoxon Signed Rank Test

p-value
Use Table A.3, see the following example.
Example 2.2 Drug abuse study, the median IQ of abusers of 16 of age or older. 15 of them were selected and their IQ scores were recorded

Using TI-83 and table A.3

Using Minitab or other statistical programs
1-sample Wilcoxon Signed Rank Test

1 Open the worksheet enter the data of the sample or the file contains the data.

2 Choose Stat > Nonparametrics > 1-Sample Wilcoxon.

3 In Variables, enter the variable name for which the median is being tested.

4 Choose Test median, and enter the value of μ_0 in the box. Click OK.
Example 2.2
Using Minitab or other statistical programs
1-sample Wilcoxon Signed Rank Test

Large sample approximation
where \(t \) is the number of tied \(|D_i| \)s for a particular rank.

\[
Z = \frac{T - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}
\]

\[
Z = \frac{T - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24} - \left(\sum t^3 - \sum t \right)/48}
\]
100(1 - \(\alpha\))% Confidence Interval based on Sign Test

- Order the sample \(X_1, X_2, X_3, \ldots X_n\) as \(Y_1, Y_2, Y_3, \ldots Y_n\)
- Determine \(k\) for the \(K \sim \text{Binomial}(n, p=0.5)\) such that
 \[P(K \leq k) < \alpha/2 \] and
 \[P(K \leq k + 1) > \alpha/2. \] This will result two Cis
 \((Y_k, Y_{n-k+1})\) with the confidence level greater than 100(1 - \(\alpha\))%
 \((Y_{k+1}, Y_{n-k})\) with the confidence level less than 100(1 - \(\alpha\))%.

Note that \((Y_k, Y_{n-k+1})\) actually is \([Y_{k+1}, Y_{n-k}]\) because the available data for constructing the interval are discrete.
100(1- \(\alpha \))% Confidence Interval based on Sign Test

- If \(P(K \leq k) = a/2 \) there is an exact 100(1- \(\alpha \))% CI. Most of the time a decision has to be made either choose the narrower CI with the confidence level less than 100(1- \(\alpha \))% or a wider CI with the confidence level greater than 100(1- \(\alpha \))%.

- Note table A.1, a binomial probability table or TI-83 can be used for finding \(k \) such that \(P(K \leq k) = a/2 \).

- The sample median gives a point estimation for the median.

Examples
100(1- \(\alpha \))% Confidence Interval based on Wilcoxon Signed Rank Test

• Compute all possible \(\mu_{ij} = (X_i + X_j)/2 \), where \(1 \leq i \leq j \leq n \).
• There are \(n(n-1)/2 + n \) these averages symmetrically distributed about the median.
• Order the \(\mu_{ij} \)s as \(Y_1, Y_2, Y_3, \cdots Y_m \), where \(m=n(n-1)/2+n \).

Use Table A.3 to determine T such that the corresponding \(P(T) < \alpha/2 \) and \(P(T+1) > \alpha/2 \). This will result two CIs:

\((Y_T, \ Y_{m-T+1})\) with the confidence level great than 100(1- \(\alpha \))%

\((Y_{T+1}, \ Y_{m-T})\) with the confidence level less than 100(1- \(\alpha \))%

• If \(P(T) = a/2 \) there is an exact 100(1- \(\alpha \))% CI. Most of the time a decision has to be made either choose the narrower CI with the confidence level less than 100(1- \(\alpha \))% or a wider CI with the confidence level great than 100(1- \(\alpha \))%.

• The median of \(\mu_{ij} \)s gives a point estimation for the population median.
Example 2.5

28.5 25.2 28.7 41 29.1 32.3 37.7 39.9 26.8 28.8

1. Compute μ_{ij}s and sort them using Minitab

Choose Stat > Nonparametrics > Pairwise Averages

Sort the μ_{ij}s as the following

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.20</td>
<td>28.50</td>
<td>29.55</td>
<td>33.20</td>
<td>34.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>28.60</td>
<td>30.40</td>
<td>33.25</td>
<td>35.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.80</td>
<td>28.65</td>
<td>30.50</td>
<td>33.35</td>
<td>35.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.85</td>
<td>28.70</td>
<td>30.55</td>
<td>33.40</td>
<td>36.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.95</td>
<td>28.75</td>
<td>30.70</td>
<td>33.90</td>
<td>36.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.00</td>
<td>28.75</td>
<td>31.45</td>
<td>34.20</td>
<td>37.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.15</td>
<td>28.80</td>
<td>32.25</td>
<td>34.30</td>
<td>38.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.65</td>
<td>28.80</td>
<td>32.30</td>
<td>34.35</td>
<td>39.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.75</td>
<td>28.90</td>
<td>32.55</td>
<td>34.50</td>
<td>39.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.80</td>
<td>28.95</td>
<td>33.10</td>
<td>34.75</td>
<td>40.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.95</td>
<td>29.10</td>
<td>33.10</td>
<td>34.85</td>
<td>41.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2.5

2. Determine the T using Table A.3
 when $T=8$ $P(8)=0.0244 < 0.025(\alpha/2)$,
 when $T=9$ $P(9)=0.0322 > 0.025(\alpha/2)$

3. The two CIs:
 \[(Y_T, Y_{m-T+1}) = (Y_8, Y_{55-8+1}) = (27.65, 36.10)\] with the confidence level 95.12% greater than 95%
 \[(Y_{T+1}, Y_{m-T}) = (Y_9, Y_{55-8}) = (27.75, 35.05)\] with the confidence level 93.56% less than 85%

One can choose either one of the two, or choose the with the confidence level as closest to 95%. That is (27.65, 36.10).

Questions

Is the result consistent with that in the textbook? Explain why?
Is the result consistent with that in the Minitab? Explain why?
What is the Wilcoxon point estimate for the median?
What is the assumption for this procedure?
Example 2.5

A graphic method is shown as in Figure 2.2 and is described in the details with 9 steps. See the textbook page 53-54.
Binomial Test

test for the proportion p of a single population.

5-Step Procedure

1. Set $H_0: p = p_0$

 $H_a: p \neq p_0$

 $p > p_0$

 $p < p_0$

2. Select α

3. Test statistic

4. Find the p-value or the critical value/rejection region

5. Draw the conclusion
Binomial Test

• Test Statistic
For random variable $K \sim \text{Binomial}(n, p_0)$, the test statistic k is the observed value of K and the number of “successes” in n trials.

• p-value is 2 multiplys the smaller of $p(K \geq k | n, p_0)$ or $p(K \leq k | n, p_0)$ for $H_a: p \neq p_0$, $p(K \geq k | n, p_0)$ for $H_a: p > p_0$ and $p(K \leq k | n, p_0)$ for $H_a: p < p_0$. For using rejection method, read the textbook, page 58-59.

Example
100(1- \(\alpha \))% Confidence Interval based on Binomial Test

- Use Table A.4 for 90%, 95% and 99% CI
 Enter \(n \) and \(k \) for the lower limit. For the upper limit:
 take 1-the value obtained by entering \(n \) and \(n-k \) form Table A.4

Example

Questions
What parameter is the binomial confidence interval constructed for?
What is point estimator the parameter mentioned above?
1-sample Runs Test for Randomness

A test is not about parameters. Is the sequence of observations of a binary variable such as tossing a coin… seem to random? 5-Step Procedure

1. Set H_0: The sequence of observations is random
 H_a: The sequence of observations is not random (two side)
 - The sequence of observations is not random because of too few runs (left, one side)
 - The sequence of observations is not random because of too many runs (right, one side)

2. Select α

3. Test statistic

4. Find the p-value or the critical value/rejection region

5. Draw the conclusion
1-sample Runs Test for Randomness

What are runs? For example tossing a coin 10 times

H H H H H H H H H H have just one run.
H H H H H T T T T T have just two runs.

... H T H T H T H T H T have ten runs.

The test statistic r is the number of runs. The rejection regions are given in Table A.5 and A.6 for the rejection of two side test $\alpha=0.05$ for two side and $\alpha=0.025$ for one side, entering n the sample size, n_1 the number of heads for example, n_2, the number of tails and r the number of runs. Use Table A.5 for left side test and Table A.6 for right side test.
Cox-Stuart Test for Trend

Test for the trend of median of a single population.

5-Step Procedure

1. Set H_0: No trend in the data

 H_a: There is an upward trend or downward trend (two side).

 There is an upward trend (right, one side).

 There is an upward trend (left, one side).

2. Select α
3. Test statistic
4. Find the p-value or the critical value/rejection region
5. Draw the conclusion
Cox-Stuart Test for Trend

Test Statistic
For given sample $X_1, X_2, X_3, \cdots X_n$, Let $C=n/2$ if n is even, otherwise $C=(n+1)/2$. Then pair all $(X_1, X_{1+C}) (X_2, X_{2+C})$, … (X_{n-C}, X_n), then the test statistic k is the number of plus sign of each pair $(1_{st} - 2_{nd}) k+$ or the number of minus sign of each pair k-.
for the two side alternative is the smaller of $k+$ of k-;
for the right side alternative is the $k+$;
for the left side alternative is the k-.
The p-value=$P(K \leq k| n^*, 0.5)$ where n^*= sum of $k+$ and k-.

Example 2.22
Median Test

Test for the equality of the medians of two populations.

5-Step Procedure

1. Set $H_0: M_x = M_y$

 $H_a: M_x \neq M_y$

 $M_x > M_y$

 $M_x < M_y$

2. Select α

3. Test statistic

4. Find the p-value or the critical value/rejection region

5. Draw the conclusion
Median Test

Test Statistic (an approximation by standard normal distribution when sample sizes are large enough)

\[Z = \frac{\frac{X}{n_1} - \frac{Y}{n_2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \]

where \(X \) and \(Y \) are the numbers of observations greater than the sample median; \(n_1 \) and \(n_2 \) are the sample sizes for population \(X \) and \(Y \) respectively; and

\[\hat{p} = \frac{X - Y}{n_1 + n_2} \]
Median Test

The p-value or the rejection region can be determined using Table A.1 or TI-83.

Questions
• How large the sample size should so that the approximation is appropriate?
• Is this the same formula used to test equal proportions for two sample in a introductory statistical course?
• Why statistic (approximation) can be used for two different test? Explain. Read page 84 for details.
Median Test

Example
Mann-Whitney’s Test (Wilcoxon)

Test for the equality of the medians of two populations.
5-Step Procedure

1. Set $H_0: M_x = M_y$

 $H_a: M_x \neq M_y$

 $M_x > M_y$

 $M_x < M_y$

2. Select α

3. Test statistic

4. Find the rejection region

5. Draw the conclusion
Mann-Whitley’s Test (Wilcoxon)

Test Statistic

\[T = S - \frac{n_1(n_1 + 1)}{2} \]

where \(S \) the sum of the ranks for population X in a combined ranks of observations of X and Y; \(n_1 \) and \(n_2 \) are the sample sizes for population X and Y respectively. Use Table A.7 to determine the rejection region:

- \(T < W_{\alpha/2} \) or \(T > W_{1-\alpha/2} \) for \(M_x \neq M_y \)
- \(T > W_{1-\alpha} \) for \(M_x > M_y \)
- \(T < W_{\alpha} \) for \(M_x < M_y \)

\[W_{1-\alpha} = n_1 n_2 - W_{\alpha} \]
Mann-Whitley’s Test (Wilcoxon)

Example
100(1-a)% C I for $M_x - M_y$

For given sample $X_1, X_2, X_3, \cdots X_{n_1}, Y_1, Y_2, Y_3, \cdots X_{n_2}$

- Compute all possible $X_i - Y_j$. There are n_1n_2 of them.
- Sort these differences in ascending order $d_1, d_2, d_3, \cdots d_{n_1n_2}$
- Use Table A.7 to determine the $W_{\alpha/2}$ th smallest d as the lower limit L and the $W_{\alpha/2}$ th largest d as the upper limit U. Then present the 100(1-a)% C I as $L < M_x - M_y < U$.

Example
Assumptions

For Median Test
- Independent random samples
- Ordinal scale with continuous variable
- Same shape of two populations
- Same probability of exceeding the median if the medians are the same.

For Mann-Whitley Test
- Independent random samples
- Ordinal scale with continuous variable
- Same shape of two populations

For 100(1-a)% C I for $M_x - M_y$:
- Independent random samples
- Ordinal scale with continuous variable
- Same shape of two populations
Ansari-Bradley Test

Test Equality of Two Standard Deviations

5-Step Procedure

1. Set H_0: $\sigma_x = \sigma_y$
 H_a: $\sigma_x \neq \sigma_y$
 $\sigma_x > \sigma_y$
 $\sigma_x < \sigma_y$

2. Select α

3. Test statistic

4. Find the rejection region

5. Draw the conclusion
Ansari-Bradley Test

Test Statistic

- Sort the combine the samples
 \[X_1, X_2, X_3, \cdots X_{n_1}, Y_1, Y_2, Y_3, \cdots Y_{n_2} \]
- Rank the combined samples
 \[1, 2, 3, \cdots n/2, n/2 \cdots, 3, 2, 1 \text{ if } n_1+n_2=n \text{ is even.} \]
 \[1, 2, 3, \cdots (n-1)/2, (n+1)/2, (n-1)/2 \cdots, 3, 2, 1 \text{ if } n \text{ is odd.} \]
- The test statistic is \(T \) the sum of the ranks form \(X \) population.

Use Table A.8 to find the rejection regions

- \(T < W_{1-\alpha/2} \) or \(T > W_{\alpha/2} \) for \(\sigma_x \neq \sigma_y \)
- \(T > W_{\alpha} \) for \(\sigma_x > \sigma_y \)
- \(T < W_{1-\alpha} \) for \(\sigma_x < \sigma_y \)
Ansari-Bradley Test

Example
Moses Test

Test Equality of Two Standard Deviations

5-Step Procedure
1. Set $H_0: \sigma_x = \sigma_y$

 $H_a: \sigma_x \neq \sigma_y$

 $\sigma_x > \sigma_y$

 $\sigma_x < \sigma_y$

2. Select α

3. Test statistic

4. Find the rejection region

5. Draw the conclusion
Moses Test

Test Statistic

• Randomly group \(X_1, X_2, X_3, \ldots X_{n_1} \) into \(m_1 \) small groups with \(k \) observations in each group and discard the rest observations. Do the same for \(Y_1, Y_2, Y_3, \ldots Y_{n_2} \) with \(m_2 \) groups.

• Compute \(g_x = \sum (x - \overline{X})^2 \) for each group for \(X \) and compute \(g_y = \sum (y - \overline{Y})^2 \) for each group for \(Y \).

• The test statistic is \(T = S - \frac{m_1 (m_1 + 1)}{2} \)

 where \(S \) the sum of the ranks for \(g_x \) s in a combined ranks for all \(g_x \) s and \(g_y \) s.

Use Table A.7 to find the rejection regions

• \(T < W_{\alpha/2} \) or \(T > W_{1-\alpha/2} \) for \(\sigma_x \neq \sigma_y \)

• \(T > W_{1-\alpha} \) for \(\sigma_x > \sigma_y \)

• \(T < W_{\alpha} \) for \(\sigma_x < \sigma_y \)

 \(W_{1-\alpha} = m_1 m_2 - W_\alpha \)
Moses Test

Example 3.37 Page 133

Data
A: 9 11 9 13 10 8 7 12 11 9
B: 12 11 13 11 11 15 15 14 15 11 14 14 13 13 9

Computing Test Statistic

\[
\begin{array}{ccccccccc}
& \sum (x-\bar{x})^2 & & \sum (y-\bar{y})^2 \\
9 & 13 & 11 & 11.63 & 15 & 11 & 13 & 8.219 & 5.139 & 2 & 1 \\
11 & 8 & 9 & 5.63 & 15 & 14 & 13 & 6.839 & 5.63 & 1 & 2 \\
13 & 14 & 9 & 15.6 & 8.219 & 2 & 4 \\
12 & 11 & 14 & 5.139 & 11.14 & 2 & 5 \\
& 11.63 & 1 & 6 \\
& 13.63 & 1 & 7 \\
& 15.6 & 2 & 8 \\
\end{array}
\]
Example for Moses Test

Test Equality of Two Standard Deviations

5-Step Procedure

1. Set H_0: $\sigma_A = \sigma_B$

 H_a: $\sigma_A \neq \sigma_B$

 $\sigma_A > \sigma_B$

 $\sigma_A < \sigma_B$

2. $\alpha=0.05$

3. Test statistic: $T = S - \frac{m_1(m_1+1)}{2} = 15 - \frac{3(3+1)}{2} = 9$

4. Rejection region: $T < W_{\alpha/2} = 1$ or $T > W_{1-\alpha/2} = 14$ from Table A.7

5. Conclusion: Do not reject H_0: $\sigma_A = \sigma_B$. There is no convincing evidence to conclude that the two formulas will result different standard deviations for the gravity
Chapter 4 Inference with Two Related Samples

Ch4.1 Sign Test for Two Related Samples

Related Two Sample Data

<table>
<thead>
<tr>
<th>Observation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>⋯</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable X</td>
<td>X_1, X_2, X_3, ⋯ X_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Y</td>
<td>Y_1, Y_2, Y_3, ⋯ Y_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for example one subject two measurements like “before and after” or one person with the height and weight.

Question

Use an example to explain the difference of the two independent samples and two related samples. How do you design your data collection plan for the case. Suppose you are studying the mileage driven by male and by female, how do you collect your data if you have case 1 with 40 identical cars, and case 2 with 40 different cars? What type test you would apply?
Sign Test for Two Related Samples

5-Step Procedure

1. Set H_0: $M_D = 0$
 - H_a: $M_D \neq 0$
 - $M_D > 0$
 - $M_D < 0$

 where $M_D = M_X - M_Y$ the difference of the two population medians

2. Select α

3. Test statistic

4. Find the rejection region

5. Draw the conclusion
Sign Test for Two Related Samples

Test Statistic

Compute all $X_i - Y_i$ s. Eliminate the case if $X_i - Y_i = 0$. The test statistic k is

- the smaller number of positive $X_i - Y_i$ s or negative $X_i - Y_i$ s for testing $M_D \neq 0$.
- the number of negative $X_i - Y_i$ s for testing $M_D > 0$.
- the number of positive $X_i - Y_i$ s for testing $M_D < 0$.

Use Table A.1 or TI-83 to calculate the binomial probability for the p-value
- $2P(K \leq k, p=0.5)$ for testing $M_D \neq 0$.
- $P(K \leq k, p=0.5)$ for testing $M_D > 0$ or $M_D < 0$.
Sign Test for Two Related Samples

Example
2-sample Wilcoxon Signed Rank Test

5-Step Procedure

1. Set H_0: $M_D = 0$

 H_a: $M_D \neq 0$

 $M_D > 0$

 $M_D < 0$

 where $M_D = M_X - M_Y$ the difference of the two population medians

2. Select α

3. Test statistic

4. Find the rejection region

5. Draw the conclusion
2-sample Wilcoxon Signed Rank Test

• It is an analog of the 2-sample t-test (paired-data)

• from a normally distributed population, as the t-test does. But Wilcoxon test assumes the data comes from a symmetric distribution. Wilcoxon test does not require the data to come

• If you cannot justify this assumption of symmetry, use the nonparametric 1-sample sign test, which does not assume a symmetric distribution.
2-sample Wilcoxon Signed Rank Test

Test Statistic

• Calculate $D_i = X_i - Y_i$, do not use the observation if $X_i = Y_i$ and reduce n by 1.

• Rank $|D_i|$. For same $|D_i|$s the ranks are the average of the consecutive ranks of $|D_i|$s as if they are not tied.

• Calculate T_+, the sum of the ranks with positive D_is and T_-, the sum of the ranks with negative

• The test statistic is smaller of T_+ or T_- for $H_a: M_D \neq 0$; T_- for $H_a: M_D > 0$ and T_+ for $H_a: M_D < 0$.

• Use formula $T_+ + T_- = n(n+1)/2$. Why?
2-sample Wilcoxon Signed Rank Test

p-value
Use Table A.3, see the following example.
2-sample Wilcoxon Signed Rank Test

Questions
1. For two related samples the sign test and the Wilcoxon test are actually the one sample test on the \(D_i = X_i - Y_i \) s. Why?
2. The two related sample test is testing \(H_0: M_D = 0 \)
 \[H_a: M_D \neq 0 \]
 \[M_D > 0 \]
 \[M_D < 0 \]
What if one wants to test whether
 \[M_D \neq 3 \]
 \[M_D > 3 \]
 \[M_D < 3 \]
How should the hypothesis be set?
100(1- \(\alpha \))% Confidence Interval for Two Related Samples based on Sign Test

- Calculate \(D_i = X_i - Y_i \), do not use the observation if \(X_i = Y_i \) and reduce \(n \) by 1.
- Order the sample \(D_1, D_2, \ldots D_n \) as \(C_1, C_2, \ldots C_n \)
- Determine \(k \) for the \(K \sim \text{Binomial}(n, p=0.5) \) such that
 \[P(K \leq k) < \alpha/2 \text{ and } P(K \leq k+1) > \alpha/2. \]
 This will result two CIs \((C_k, C_{n-k+1}) \) with the confidence level greater than 100(1- \(\alpha \))%
 \((C_{k+1}, C_{n-k}) \) with the confidence level less than 100(1- \(\alpha \))%.

Note that \((C_k, C_{n-k+1}) \) actually is \([C_{k+1}, C_{n-k}] \) because the available data for constructing the interval are discrete.
100(1- \(\alpha \))% Confidence Interval for Two Related Samples based on Sign Test

- If \(P(K \leq k) = \alpha/2 \) there is an exact 100(1- \(\alpha \))% CI. Most of the time a decision has to be made either choose the narrower CI with the confidence level less than 100(1- \(\alpha \))% or a wider CI with the confidence level greater than 100(1- \(\alpha \))%.

- Note table A.1, a binomial probability table or TI-83 can be used for finding \(k \) such that \(P(K \leq k) = \alpha/2 \).

- The sample median gives a point estimation for the median.

Examples
100(1- \(\alpha \))% Confidence Interval for Two Related Samples based on Wilcoxon Signed Rank Test

• Compute all possible \(\mu_{ij} = (D_i + D_j)/2 \), where \(1 \leq i \leq j \leq n \).
• There are \(n(n-1)/2+n \) these averages symmetrically distributed about the median.
• Order the \(\mu_{ij} \) s as \(C_1, C_2, \cdots C_m \), where \(m=n(n-1)/2+n \)
 Use Table A.3 to determine \(T \) such that the corresponding \(P(T) < \alpha/2 \) and \(P(T+1) > \alpha/2 \). This will result two CIs:
 \((C_T, C_{m-T+1}) \) with the confidence level great than 100(1- \(\alpha \))%
 \((C_{T+1}, C_{m-T}) \) with the confidence level less than 100(1- \(\alpha \))%
• If \(P(T) = \alpha/2 \) there is an exact 100(1- \(\alpha \))% CI. Most of the time a decision has to be made either choose the narrower CI with the confidence level less than 100(1- \(\alpha \))% or a wider CI with the confidence level great than 100(1- \(\alpha \))%.
• The median of \(\mu_{ij} \) s gives a point estimation for the population median.
100(1- \(\alpha\))\% Confidence Interval for Two Related Samples based on Wilcoxon Signed Rank Test

Example 4.4 p159

Exercise Ch4-9
100(1 - \(\alpha \))% Confidence Interval for Two Related Samples based on Wilcoxon Signed Rank Test

<table>
<thead>
<tr>
<th>C14</th>
<th>-1.40 -1.35 -1.35 -1.30 -1.30 -1.30 -1.25 -1.20 -1.20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.10 -1.05 -1.00 -1.00 -1.00 -1.00 -0.95 -0.95 -0.95</td>
</tr>
<tr>
<td></td>
<td>-0.95 -0.95 -0.90 -0.90 -0.90 -0.85 -0.85 -0.85 -0.85</td>
</tr>
<tr>
<td></td>
<td>-0.85 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.75</td>
</tr>
<tr>
<td></td>
<td>-0.70 -0.70 -0.70 -0.70 -0.70 -0.65 -0.65 -0.65 -0.60</td>
</tr>
<tr>
<td></td>
<td>-0.60 -0.60 -0.60 -0.60 -0.60 -0.55 -0.55 -0.55 -0.55</td>
</tr>
<tr>
<td></td>
<td>-0.55 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.45 -0.45</td>
</tr>
<tr>
<td></td>
<td>-0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.40 -0.40 -0.40</td>
</tr>
<tr>
<td></td>
<td>-0.40 -0.40 -0.40 -0.40 -0.35 -0.35 -0.30 -0.30 -0.30</td>
</tr>
<tr>
<td></td>
<td>-0.30 -0.30 -0.30 -0.30 -0.30 -0.25 -0.20 -0.20 -0.20</td>
</tr>
<tr>
<td></td>
<td>-0.20 -0.20 -0.20 -0.15 -0.15 -0.10 -0.10 -0.10 -0.10</td>
</tr>
<tr>
<td></td>
<td>-0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.00</td>
</tr>
<tr>
<td></td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.30</td>
</tr>
<tr>
<td></td>
<td>0.35 0.40 0.50</td>
</tr>
</tbody>
</table>

MTB > WInterval 99.0 'X-Y'.

Wilcoxon Signed Rank CI: X-Y

<table>
<thead>
<tr>
<th>Confidence Estimated Achieved Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>X-Y</td>
</tr>
</tbody>
</table>

MTB > Let c18 = 'Ex4-4E'-C17
MTB > Walsh C18 c19.
MTB > Sort C19 c20;
SUBC> By C19.
MTB > print c20

Data Display

<table>
<thead>
<tr>
<th>C20</th>
<th>-2.00 -0.95 0.10 1.55 2.40 2.60 3.45 5.10 5.95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.80 7.10 7.60 8.15 8.65 9.00 10.05 10.30 10.65</td>
</tr>
<tr>
<td></td>
<td>11.15 11.35 11.50 12.00 12.55 13.40 13.85 14.70 16.20</td>
</tr>
<tr>
<td></td>
<td>16.70 17.20 18.10 18.60 19.40 19.90 20.00 21.30 22.60</td>
</tr>
</tbody>
</table>

MTB > WInterval 99.0 C18.

Wilcoxon Signed Rank CI: C18

<table>
<thead>
<tr>
<th>Confidence Estimated Achieved Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>X-Y</td>
</tr>
</tbody>
</table>

MTB >
Test Two Proportions for Two Related Samples

About the Data
Suppose N subject are selected. Each subject is taught with method 1 to perform a task for using one hand and is taught with method 2 for using another hand. The results are summarized as the following

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>No</td>
<td>C</td>
</tr>
<tr>
<td>Total</td>
<td>A+C</td>
</tr>
</tbody>
</table>

Where
A is the number of subjects can perform the task using both hands.
B is the number of subjects can only perform the task taught by Method 1.
C is the number of subjects can only perform the task taught by Method 2.
D is the number of subjects can not perform the task taught by neither methods.
Test Two Proportions for Two Related Samples

Let \(P_1 \) be the proportion of positive result taught by method 1 and let \(P_2 \) be the proportion of positive result taught by method 2.

5 Step procedure

1. Set \(H_0: P_1 = P_2 \)
 \(H_a: P_1 \neq P_2 \)
 - \(P_1 > P_2 \)
 - \(P_1 < P_2 \)

2. Select \(\alpha \)

3. Test statistic

4. Find the rejection region/p-value

5. Draw the conclusion
Test Two Proportions for Two Related Samples

Test Statistic is an approximation using standard normal distribution

\[Z = \frac{B - C}{\sqrt{B + C}} \]

Use Table A.2 or TI-83 to find the rejection regions

- \(Z < -Z_{\alpha/2} \) or \(Z > W_{\alpha/2} \) for \(P_1 \neq P_2 \)
- \(Z > Z_{\alpha} \) for \(P_1 > P_2 \)
- \(Z < -Z_{\alpha} \) for \(P_1 < P_2 \)

Questions:

Can we simply use Method 1 to teach left hand and use Method 2 to teach right hand and then test the hypothesis? Is that necessary to assign the methods to an individual randomly? Explain.

What are the point estimations for \(P_1 \) and \(P_2 \)?

How to find the p-value for the hypothesis test?
Test Two Proportions for Two Related Samples

Example